Appendix X. Dustfall and metals results and calculation

Votre # du projet: C117642

Votre # Bordereau: C117642-NONT-01-01

Attention: Martine Lepage

Bureau Veritas Laboratories 889 Montée de Liesse Ville St-Laurent, QC CANADA H4T 1P5

Date du rapport: 2021/05/12

Rapport: R6631546 Version: 1 - Finale

CERTIFICAT D'ANALYSES

DE DOSSIER BV LABS: C1B1520 Reçu: 2021/04/27, 09:30

Matrice: Eau

Nombre d'échantillons reçus: 9

		Date de l'	Date		
Analyses	Quantité	extraction	Analysé	Méthode de laboratoire	Méthode d'analyse
MERCURE PAR VAPEUR FROIDE AA	9	2021/05/10	2021/05/10	CAM SOP-00453	
Total Metals Analysis by ICPMS	8	N/A	2021/05/10	CAM SOP-00447	
Total Metals Analysis by ICPMS	1	N/A	2021/05/12	CAM SOP-00447	
Insoluble Part. in Dustfall (D1739mod)	9	2021/05/06	2021/05/06	BRL SOP-00121	ASTM D1739 m
Soluble Part. in Dustfall (D1739mod)	9	2021/05/10	2021/05/06	BRL SOP-00121	ASTM D1739 m
Volume of Sample Received	9	2021/05/06	2021/05/06		

Lorsque la méthode de référence comprend un suffixe « m », cela signifie que la méthode d'analyse du laboratoire contient des modifications validées et appliquées afin d'améliorer la performance de la méthode de référence.

clé de cryptage

m Sin

Marinela Sim Chargée de projets 13 May 2021 16:30:09

Veuillez adresser toute question concernant ce certificat d'analyse à votre chargé(e) de projets

Marinela Sim, Chargée de projets

Courriel: Marinela.Sim@bureauveritas.com

Téléphone (905)817-5828

Lab BV a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les << signataires>> requis, conformément à l'ISO/CEI 17025. Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

Total Cover Pages : 1 Page 1 de 11

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

RÉSULTATS D'ANALYSES POUR LES ÉCHANTILLONS D'EAU

Identification BV Labs		PKO877	PKO878	PKO879	PKO880				
Date d'échantillonnage		2021/04/16 12:16	2021/04/16 13:07	2021/04/17 15:56	2021/04/10 15:20				
# Bordereau		C117642-NONT-01-01	C117642-NONT-01-01	C117642-NONT-01-01	C117642-NONT-01-01				
	Unités	JA6438-AQS1-SN	JA6438-AQS2-SN	JA6438-AQS3-SN	JA6438-AQS4-SN	LDR	Lot CQ		
	-								
Particules Totales Insoluble	mg	16.2	119	4.40	7.20	0.60	7337068		
Particules Totales Soluble	mg	17.6	22.0	16.8	22.4	4.0	7342616		
Charge/Prep Analysis									
Volume de l'échantillon	ml	4000	3700	2700	2900	1	7337025		
LDR = limite de détection rappo	DR = limite de détection rapportée								
Lot CQ = Lot Contrôle Qualité									

Identification BV Labs		PKO881	PKO882	PKO883	PKO884				
Date d'échantillonnage		2021/04/10 16:35	2021/04/04 15:17	2021/04/19 08:05	2021/04/19 09:37				
# Bordereau		C117642-NONT-01-01	C117642-NONT-01-01	C117642-NONT-01-01	C117642-NONT-01-01				
	Unités	JA6438-AQS5-SN	JA6438-AQS6-SN	JA6438-AQS7-SN	JA6438-AQS8-SN	LDR	Lot CQ		
Particules Totales Insoluble	mg	6.20	52.2	47.0	13.6	0.60	7337068		
Particules Totales Soluble	mg	16.8	14.0	10.4	34.4	4.0	7342616		
harge/Prep Analysis									
Volume de l'échantillon	ml	4000	2400	2500	3500	1	7337025		

LDR = limite de détection rapportée Lot CQ = Lot Contrôle Qualité

Particules Totales Insoluble	mg	8.40	0.60	7337068
Particules Totales Soluble	mg	21.6	4.0	7342616
Charge/Prep Analysis			·	
Volume de l'échantillon	ml	4500	1	7337025

LDR = limite de détection rapportée

Lot CQ = Lot Contrôle Qualité

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

ELEMENTS BY ATOMIC SPECTROSCOPY (EAU)

	PKO877		PKO878		PKO879		
	2021/04/16 12:16		2021/04/16 13:07		2021/04/17 15:56		
	C117642-NONT-01-01		C117642-NONT-01-01		C117642-NONT-01-01		
Unités	JA6438-AQS1-SN	Lot CQ	JA6438-AQS2-SN	Lot CQ	JA6438-AQS3-SN	LDR	Lot CQ
		-				-	
mg/L	<0.00010	7342985	<0.00010	7342985	<0.00010	0.00010	7342985
ug/L	<1.0	7343107	<1.0	7347229	<1.0	1.0	7343107
ug/L	<2.0	7343107	<2.0	7347229	<2.0	2.0	7343107
ug/L	<0.40	7343107	<0.40	7347229	<0.40	0.40	7343107
ug/L	<0.090	7343107	<0.090	7347229	<0.090	0.090	7343107
ug/L	<5.0	7343107	<5.0	7347229	<5.0	5.0	7343107
ug/L	<0.90	7343107	<0.90	7347229	<0.90	0.90	7343107
ug/L	<100	7343107	<100	7347229	<100	100	7343107
ug/L	<0.50	7343107	<0.50	7347229	<0.50	0.50	7343107
ug/L	<1.0	7343107	<1.0	7347229	<1.0	1.0	7343107
ug/L	<0.090	7343107	<0.090	7347229	<0.090	0.090	7343107
ug/L	<0.050	7343107	<0.050	7347229	<0.050	0.050	7343107
ug/L	<0.50	7343107	<0.50	7347229	<0.50	0.50	7343107
ug/L	<5.0	7343107	6.2	7347229	<5.0	5.0	7343107
	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2021/04/16 12:16 C117642-NONT-01-01 Unités JA6438-AQS1-SN mg/L <0.00010 ug/L <1.0 ug/L <2.0 ug/L <0.40 ug/L <5.0 ug/L <100 ug/L <100 ug/L <1.0 ug/L <0.50 ug/L <0.50 ug/L <0.090 ug/L <0.50 ug/L <0.50 ug/L <0.090 ug/L <0.050 ug/L <0.050 ug/L <0.050 ug/L <0.050 ug/L <0.050 ug/L <0.050	2021/04/16 12:16 C117642-NONT-01-01 Unités JA6438-AQS1-SN Lot CQ Image (L) V (2.00010 7342985 Ug/L <0.00010	2021/04/16 2021/04/16 13:07 C117642-NONT-01-01 C117642-NONT-01-01 Unités JA6438-AQS1-SN Lot CQ JA6438-AQS2-SN Lot CQ JA6438-AQS1-Lot CQ JA6438-AQS1-L	2021/04/16 13:07 C117642-NONT-01-01 C117642-NONT-01-01 Lot CQ JA6438-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA64298 JA6438-AQS2-SN JA6438-AQS2-SN JA6429 JA6438-AQS2-SN JA6438-AQS2-SN JA6429 JA6438-AQS2-SN JA6438-AQS2-SN JA6429 JA6438-AQS2-SN JA6438-AQS2-SN JA6429 JA6438-AQS2-SN JA6429 JA6438-AQS2-SN JA6438-AQS2-SN JA6429 JA6438-AQS2-SN JA6439-AQS2-SN JA6438-AQS2-SN JA6439-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA6438-AQS2-SN JA6439-AQS2-SN JA6438-AQS2-SN JA6439-AQS2-SN JA6439-AQS2-SN JA6439-AQS2-SN JA6438-AQS2-SN JA6439-AQS2-SN JA6439-AQS2-SN JA6439-AQS2-SN JA6439-AQS2-SN JA6438-AQS2-SN JA6439-AQS2-SN JA6438-AQS2-SN JA6429-AQS2-SN JA6439-AQS2-SN JA6439-AQS2-SN JA6439-AQS2-SN JA6429-AQS2-SN JA6439-AQS2-SN JA6429-AQS2-SN JA6439-AQS2-SN JA6429-AQS2-SN JA6429-AQS2-SN JA6439-AQS2-SN JA6429-AQS2-SN JA6429-AQS2-SN	2021/04/16	2021/04/16

LDR = limite de détection rapportée

Lot CQ = Lot Contrôle Qualité

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

ELEMENTS BY ATOMIC SPECTROSCOPY (EAU)

Identification BV Labs		PKO879			PKO880	PKO881		
Date d'échantillonnage		2021/04/17 15:56			2021/04/10 15:20	2021/04/10 16:35		
# Bordereau		C117642-NONT-01-01			C117642-NONT-01-01	C117642-NONT-01-01		
	Unités	JA6438-AQS3-SN Dup. de Lab.	LDR	Lot CQ	JA6438-AQS4-SN	JA6438-AQS5-SN	LDR	Lot CQ
MÉTAUX								
Mercure (Hg)	mg/L				<0.00010	<0.00010	0.00010	7342985
Arsenic (As) totaux	ug/L	<1.0	1.0	7343107	<1.0	<1.0	1.0	7343107
Baryum (Ba) totaux	ug/L	<2.0	2.0	7343107	<2.0	<2.0	2.0	7343107
Béryllium (Be) totaux	ug/L	<0.40	0.40	7343107	<0.40	<0.40	0.40	7343107
Cadmium (Cd) totaux	ug/L	<0.090	0.090	7343107	<0.090	<0.090	0.090	7343107
Chrome (Cr) totaux	ug/L	<5.0	5.0	7343107	<5.0	<5.0	5.0	7343107
Cuivre (Cu) totaux	ug/L	<0.90	0.90	7343107	<0.90	<0.90	0.90	7343107
Fer (Fe) totaux	ug/L	<100	100	7343107	<100	<100	100	7343107
Plomb (Pb) totaux	ug/L	<0.50	0.50	7343107	<0.50	<0.50	0.50	7343107
Nickel (Ni) totaux	ug/L	<1.0	1.0	7343107	<1.0	<1.0	1.0	7343107
Argent (Ag) totaux	ug/L	<0.090	0.090	7343107	<0.090	<0.090	0.090	7343107
Thallium (TI) totaux	ug/L	<0.050	0.050	7343107	<0.050	<0.050	0.050	7343107
Vanadium (V) totaux	ug/L	<0.50	0.50	7343107	<0.50	<0.50	0.50	7343107
Zinc (Zn) totaux	ug/L	<5.0	5.0	7343107	<5.0	<5.0	5.0	7343107

LDR = limite de détection rapportée

Lot CQ = Lot Contrôle Qualité

Duplicata de laboratoire

Date du rapport: 2021/05/12

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

ELEMENTS BY ATOMIC SPECTROSCOPY (EAU)

Identification BV Labs		PKO882	PKO883	PKO884		
Date d'échantillonnage		2021/04/04 15:17	2021/04/19 08:05	2021/04/19 09:37		
# Bordereau		C117642-NONT-01-01	C117642-NONT-01-01	C117642-NONT-01-01		
	Unités	JA6438-AQS6-SN	JA6438-AQS7-SN	JA6438-AQS8-SN	LDR	Lot CQ
MÉTAUX						
Mercure (Hg)	mg/L	<0.00010	<0.00010	<0.00010	0.00010	7342985
Arsenic (As) totaux	ug/L	<1.0	<1.0	<1.0	1.0	7343107
Baryum (Ba) totaux	ug/L	<2.0	<2.0	<2.0	2.0	7343107
Béryllium (Be) totaux	ug/L	<0.40	<0.40	<0.40	0.40	7343107
Cadmium (Cd) totaux	ug/L	<0.090	<0.090	<0.090	0.090	7343107
Chrome (Cr) totaux	ug/L	<5.0	<5.0	<5.0	5.0	7343107
Cuivre (Cu) totaux	ug/L	<0.90	<0.90	<0.90	0.90	7343107
Fer (Fe) totaux	ug/L	<100	160	<100	100	7343107
Plomb (Pb) totaux	ug/L	<0.50	<0.50	<0.50	0.50	7343107
Nickel (Ni) totaux	ug/L	<1.0	<1.0	<1.0	1.0	7343107
Argent (Ag) totaux	ug/L	<0.090	<0.090	<0.090	0.090	7343107
Thallium (Tl) totaux	ug/L	<0.050	<0.050	<0.050	0.050	7343107
Vanadium (V) totaux	ug/L	<0.50	<0.50	<0.50	0.50	7343107
Zinc (Zn) totaux	ug/L	<5.0	<5.0	<5.0	5.0	7343107
LDR = limite de détection rap	portée		•			•

LDR = limite de détection rapportée

Lot CQ = Lot Contrôle Qualité

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

ELEMENTS BY ATOMIC SPECTROSCOPY (EAU)

Identification BV Labs		PKO885		
Date d'échantillonnage		2021/04/07		
		16:23		
# Bordereau		C117642-NONT-01-01		
	Unités	JA6438-AQS9-SN	LDR	Lot CQ
MÉTAUX				
Mercure (Hg)	mg/L	<0.00010	0.00010	7342985
Arsenic (As) totaux	ug/L	<1.0	1.0	7343107
Baryum (Ba) totaux	ug/L	<2.0	2.0	7343107
Béryllium (Be) totaux	ug/L	<0.40	0.40	7343107
Cadmium (Cd) totaux	ug/L	<0.090	0.090	7343107
Chrome (Cr) totaux	ug/L	<5.0	5.0	7343107
Cuivre (Cu) totaux	ug/L	<0.90	0.90	7343107
Fer (Fe) totaux	ug/L	<100	100	7343107
Plomb (Pb) totaux	ug/L	<0.50	0.50	7343107
Nickel (Ni) totaux	ug/L	<1.0	1.0	7343107
Argent (Ag) totaux	ug/L	<0.090	0.090	7343107
Thallium (Tl) totaux	ug/L	<0.050	0.050	7343107
Vanadium (V) totaux	ug/L	<0.50	0.50	7343107
Zinc (Zn) totaux	ug/L	<5.0	5.0	7343107
LDR = limite de détection rappor	tée		-	
Lot CQ = Lot Contrôle Qualité				

Date du rapport: 2021/05/12

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

REMARQUES GÉNÉRALES

Bench Level Deviation Attached,50% of Volume post seperation filtered and all residues(With DLs) for insoluble and soluble are multiplied by 2. Raw data Attached

Les résultats s'appliquent seulement pour les paramètres analysés.

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

RAPPORT ASSURANCE QUALITÉ

Lot Lot	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités	Limites CC
7337068	DPN	Blanc fortifié	Particules Totales Insoluble	2021/05/06		95	%	85 - 115
7337068	DPN	Blanc de méthode	Particules Totales Insoluble	2021/05/06	<0.30		mg	
7342616	DPN	Blanc fortifié	Particules Totales Soluble	2021/05/06		100	%	85 - 115
7342616	DPN	Blanc de méthode	Particules Totales Soluble	2021/05/06	<2.0		mg	
7342985	PBA	Échantillon fortifié	Mercure (Hg)	2021/05/10		98	%	75 - 125
7342985	PBA	Blanc fortifié	Mercure (Hg)	2021/05/10		100	%	80 - 120
7342985	PBA	Blanc de méthode	Mercure (Hg)	2021/05/10	<0.00010		mg/L	
7342985	PBA	RPD	Mercure (Hg)	2021/05/10	NC		%	20
7343107	AFZ	Échantillon fortifié [PKO879-01]	Arsenic (As) totaux	2021/05/10		96	%	80 - 120
		. ,	Baryum (Ba) totaux	2021/05/10		95	%	80 - 120
			Béryllium (Be) totaux	2021/05/10		94	%	80 - 120
			Cadmium (Cd) totaux	2021/05/10		97	%	80 - 120
			Chrome (Cr) totaux	2021/05/10		93	%	80 - 120
			Cuivre (Cu) totaux	2021/05/10		97	%	80 - 120
			Fer (Fe) totaux	2021/05/10		93	%	80 - 120
			Plomb (Pb) totaux	2021/05/10		93	%	80 - 120
			Nickel (Ni) totaux	2021/05/10		93	%	80 - 120
			Argent (Ag) totaux	2021/05/10		97	%	80 - 120
			Thallium (TI) totaux	2021/05/10		94	%	80 - 120
			Vanadium (V) totaux	2021/05/10		94	%	80 - 120
			Zinc (Zn) totaux	2021/05/10		100	%	80 - 120
7343107	AFZ	Blanc fortifié	Arsenic (As) totaux	2021/05/10		98	%	80 - 120
7343107	AI Z	blanc for time	Baryum (Ba) totaux	2021/05/10		96	%	80 - 120
			Béryllium (Be) totaux	2021/05/10		94	%	80 - 120
			Cadmium (Cd) totaux	2021/05/10		98	%	80 - 120
			Chrome (Cr) totaux	2021/05/10		94	%	80 - 120
			Cuivre (Cu) totaux	2021/05/10		98	%	80 - 120
			Fer (Fe) totaux	2021/05/10		94	%	80 - 120
			Plomb (Pb) totaux	2021/05/10		92	%	80 - 120
			Nickel (Ni) totaux	2021/05/10		95	%	80 - 120
			Argent (Ag) totaux	2021/05/10		96	%	80 - 120
			Thallium (TI) totaux	2021/05/10		93	% %	80 - 120
			Vanadium (V) totaux	2021/05/10		96	% %	80 - 120
			• •				% %	
7242107	۸ ۲ 7	Dlana da máthada	Zinc (Zn) totaux	2021/05/10	-1.0	102		80 - 120
7343107	AFZ	Blanc de méthode	Arsenic (As) totaux	2021/05/10 2021/05/10	<1.0		ug/L	
			Baryum (Ba) totaux		<2.0		ug/L	
			Béryllium (Be) totaux	2021/05/10	<0.40		ug/L	
			Cadmium (Cd) totaux	2021/05/10	<0.090		ug/L	
			Chrome (Cr) totaux	2021/05/10	<5.0		ug/L	
			Cuivre (Cu) totaux	2021/05/10	<0.90		ug/L	
			Fer (Fe) totaux	2021/05/10	<100		ug/L	
			Plomb (Pb) totaux	2021/05/10	<0.50		ug/L	
			Nickel (Ni) totaux	2021/05/10	2.8, LDR=1.0		ug/L	
			Argent (Ag) totaux	2021/05/10	<0.090		ug/L	
			Thallium (Tl) totaux	2021/05/10	<0.050		ug/L	
			Vanadium (V) totaux	2021/05/10	<0.50		ug/L	
			Zinc (Zn) totaux	2021/05/10	5.6, LDR=5.0		ug/L	
7343107	AFZ	RPD [PKO879-01]	Arsenic (As) totaux	2021/05/10	NC		%	20
			Baryum (Ba) totaux	2021/05/10	NC		%	20

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

RAPPORT ASSURANCE QUALITÉ(CONT'D)

Lot Lot	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités	Limites CC
			Béryllium (Be) totaux	2021/05/10	NC		%	20
			Cadmium (Cd) totaux	2021/05/10	NC		%	20
			Chrome (Cr) totaux	2021/05/10	NC		%	20
			Cuivre (Cu) totaux	2021/05/10	NC		%	20
			Fer (Fe) totaux	2021/05/10	NC		%	20
			Plomb (Pb) totaux	2021/05/10	NC		%	20
			Nickel (Ni) totaux	2021/05/10	NC		%	20
			Argent (Ag) totaux	2021/05/10	NC		%	20
			Thallium (TI) totaux	2021/05/10	NC		%	20
			Vanadium (V) totaux	2021/05/10	NC		%	20
			Zinc (Zn) totaux	2021/05/10	NC		%	20
7347229	AFZ	Échantillon fortifié	Arsenic (As) totaux	2021/05/12		100	%	80 - 120
			Baryum (Ba) totaux	2021/05/12		94	%	80 - 120
			Béryllium (Be) totaux	2021/05/12		95	%	80 - 120
			Cadmium (Cd) totaux	2021/05/12		97	%	80 - 120
			Chrome (Cr) totaux	2021/05/12		97	%	80 - 120
			Cuivre (Cu) totaux	2021/05/12		99	%	80 - 120
			Fer (Fe) totaux	2021/05/12		95	%	80 - 120
			Plomb (Pb) totaux	2021/05/12		92	%	80 - 120
			Nickel (Ni) totaux	2021/05/12		93	%	80 - 120
			Argent (Ag) totaux	2021/05/12		96	%	80 - 120
			Thallium (TI) totaux	2021/05/12		90	%	80 - 120
			Vanadium (V) totaux	2021/05/12		101	%	80 - 120
			Zinc (Zn) totaux	2021/05/12		95	%	80 - 120
7347229	AFZ	Blanc fortifié		2021/05/12		100	% %	80 - 120
/34/229	AFZ	bianc fortine	Arsenic (As) totaux	2021/05/12		97	% %	80 - 120
			Baryum (Ba) totaux			99	% %	80 - 120
			Béryllium (Be) totaux	2021/05/12				
			Cadmium (Cd) totaux	2021/05/12		100	%	80 - 120
			Chrome (Cr) totaux	2021/05/12		96	%	80 - 120
			Cuivre (Cu) totaux	2021/05/12		99	%	80 - 120
			Fer (Fe) totaux	2021/05/12		96	%	80 - 120
			Plomb (Pb) totaux	2021/05/12		95	%	80 - 120
			Nickel (Ni) totaux	2021/05/12		97	%	80 - 120
			Argent (Ag) totaux	2021/05/12		98	%	80 - 120
			Thallium (TI) totaux	2021/05/12		94	%	80 - 120
			Vanadium (V) totaux	2021/05/12		98	%	80 - 120
			Zinc (Zn) totaux	2021/05/12		103	%	80 - 120
7347229	AFZ	Blanc de méthode	Arsenic (As) totaux	2021/05/12	<1.0		ug/L	
			Baryum (Ba) totaux	2021/05/12	<2.0		ug/L	
			Béryllium (Be) totaux	2021/05/12	<0.40		ug/L	
			Cadmium (Cd) totaux	2021/05/12	<0.090		ug/L	
			Chrome (Cr) totaux	2021/05/12	<5.0		ug/L	
			Cuivre (Cu) totaux	2021/05/12	<0.90		ug/L	
			Fer (Fe) totaux	2021/05/12	<100		ug/L	
			Plomb (Pb) totaux	2021/05/12	<0.50		ug/L	
			Nickel (Ni) totaux	2021/05/12	<1.0		ug/L	
			Argent (Ag) totaux	2021/05/12	<0.090		ug/L	
			Thallium (TI) totaux	2021/05/12	< 0.050		ug/L	
			Vanadium (V) totaux	2021/05/12	<0.50		ug/L	
			Zinc (Zn) totaux	2021/05/12	<5.0		ug/L	
7347229	AFZ	RPD	Arsenic (As) totaux	2021/05/12	NC		%	20
			Baryum (Ba) totaux	2021/05/12	4.3		%	20

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

RAPPORT ASSURANCE QUALITÉ(CONT'D)

Lot Lot	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités	Limites CQ
			Béryllium (Be) totaux	2021/05/12	NC		%	20
			Cadmium (Cd) totaux	2021/05/12	NC		%	20
			Chrome (Cr) totaux	2021/05/12	NC		%	20
			Cuivre (Cu) totaux	2021/05/12	2.5		%	20
			Fer (Fe) totaux	2021/05/12	2.8		%	20
			Plomb (Pb) totaux	2021/05/12	NC		%	20
			Nickel (Ni) totaux	2021/05/12	4.1		%	20
			Argent (Ag) totaux	2021/05/12	NC		%	20
			Thallium (TI) totaux	2021/05/12	NC		%	20
			Vanadium (V) totaux	2021/05/12	NC		%	20
			Zinc (Zn) totaux	2021/05/12	NC		%	20

Duplicata: Deux parties aliquotes distinctes obtenues à partir d'un même échantillon et soumises en même temps au même processus analytique du prétraitement au dosage. Les duplicatas servent à vérifier la variance de la mesure.

Échantillon fortifié: Échantillon auquel a été ajouté une quantité connue d'un ou de plusieurs composés chimiques d'intérêt. Sert à évaluer les interférences dues à la matrice.

Blanc fortifié: Un blanc, d'une matrice exempte de contaminants, auquel a été ajouté une quantité connue d'analyte provenant généralement d'une deuxième source. Utilisé pour évaluer la précision de la méthode.

Blanc de méthode: Une partie aliquote de matrice pure soumise au même processus analytique que les échantillons, du prétraitement au dosage. Sert à évaluer toutes contaminations du laboratoire.

NC (RPD du duplicata): La RPD du duplicata n'a pas été calculée. La concentration de l'échantillon ou du duplicata était trop faible pour permettre le calcul de la RPD (différence absolue <= 2x LDR)

Réc = Récupération

Bureau Veritas Laboratories Votre # du projet: C117642 Initiales du préleveur: JFD

PAGE DES SIGNATURES DE VALIDATION

Les résultats analytiques ainsi que les données de contrôle-qualité contenus dans ce rapport furent vérifiés et validés par les personnes suivantes:

Chrone		
Anastassia Hamanov	-	
2		
Bunda Moore	_	
Bunda Moore Brenda Moore	-	

Lab BV a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les <<signataires>> requis, conformément à l'ISO/CEI 17025. Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

Your P.O. #: 3000000997 Your Project #: DUSTFALL Site Location: DS03 & DS04

Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

> Report Date: 2021/10/01 Report #: R2694392

Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C140041 Received: 2021/08/05, 12:50

Sample Matrix: Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Analytical Method
Dustfall Parameters (1)	7	N/A	N/A		
Insoluble Dustfall (1)	7	N/A	N/A		
Soluble Dustfall (1)	7	N/A	N/A		
Dustfall (1)	7	N/A	N/A		
Mercury in water by CVAA (1)	7	N/A	N/A		
Total Metals by ICP (1)	7	N/A	N/A	STL SOP-00062	MA.200–Mét. 1.2 R5 m
Insoluble Part.in dustfall (D1739mod) (1)	7	N/A	N/A		
Soluble Part.in dustfall (D1739mod) (1)	7	N/A	N/A		
Volume of sample received (1)	7	N/A	N/A		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas - Mississauga, 6740 Campobello Rd, Mississauga, ON, L5N 2L8

Your P.O. #: 3000000997 Your Project #: DUSTFALL Site Location: DS03 & DS04

Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST **BUREAU 1120** MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/10/01

Report #: R2694392 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C140041 Received: 2021/08/05, 12:50

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Martine Lepage Project Manager and Account Manager 01 Oct 2021 15:49:32

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL Site Location: DS03 & DS04

Your P.O. #: 3000000997 Sampler Initials: AC

GENERAL COMMENTS

Results relate only to the items tested.		

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL

Site Location: DS03 & DS04 Your P.O. #: 3000000997 Sampler Initials: AC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 300000997 Your Project #: DUSTFALL Site Location: DS03-4 Your C.O.C. #: n/a

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/10/13

Report #: R2704036 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C150524 Received: 2021/09/22, 16:45

Sample Matrix: Impinger Solution

Samples Received: 6

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Weight of particles	6 2021/09/	29 2021/10/1	2 STL SOP-00020	MA100–Part. 1.0 R4 m
Extractable Metals in Impinger	6 2021/10/	13 2021/10/1	3 STL SOP-00075	MA.200–Mét. 1.2 R5 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Your P.O. #: 3000000997 Your Project #: DUSTFALL Site Location: DS03-4 Your C.O.C. #: n/a

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/10/13

Report #: R2704036 Version: 1 - Final

CERTIFICATE OF ANALYSIS

<u>LAB BV JOB #: C150524</u> Received: 2021/09/22, 16:45

Encryption Key

Sou

Josue Moran Project Manager 20 Dec 2021 12:16:59

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TATA STEEL MINERALS CANADA

Client Project #: DUSTFALL
Site Location: DS03-4
Your P.O. #: 3000000997
Sampler Initials: JFD

METALS (IMPINGER SOLUTION)

Lab BV ID		JS2207	JS2208	JS2209	JS2210	JS2211	JS2212		
Sampling Date		2021/09/14	2021/09/14	2021/09/14	2021/09/14	2021/09/14	2021/09/15		
Sampling Date		14:51	16:25	17:10	17:36	18:42	08:42		
COC Number		n/a	n/a	n/a	n/a	n/a	n/a		
	Units	AQS1	AQS3	AQS4	AQS5	AQS6	AQS9	RDL	QC Batch
METALS									
Antimony (Sb) †	ug	<0.1	0.2	0.1	<0.1	0.1	0.2	0.1	2239545
Silver (Ag) †	ug	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2239545
Arsenic (As) †	ug	<0.1	0.2	0.1	0.1	0.2	0.2	0.1	2239545
Barium (Ba) †	ug	9.22	20.7	33.0	15.0	11.4	27.8	0.05	2239545
Beryllium (Be) †	ug	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2239545
Cadmium (Cd) †	ug	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2239545
Chromium (Cr) †	ug	0.6	0.4	0.5	0.5	0.6	0.8	0.1	2239545
Copper (Cu) †	ug	3.6	4.0	2.9	4.9	14.9	5.0	0.1	2239545
Manganese (Mn) †	ug	31.9	14.2	16.9	12.7	21.6	11.9	0.1	2239545
Mercury (Hg) †	ug	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2239545
Nickel (Ni) †	ug	0.8	0.7	0.4	1.0	0.5	0.3	0.1	2239545
Lead (Pb) †	ug	2.0	0.8	0.9	0.8	<0.5	2.1	0.5	2239545
Thallium (TI) †	ug	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	2239545
Vanadium (V) †	ug	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	2239545
Zinc (Zn) †	ug	5.3	4.9	11.9	5.3	7.3	6.2	0.1	2239545

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accreditable

TATA STEEL MINERALS CANADA

Client Project #: DUSTFALL
Site Location: DS03-4
Your P.O. #: 3000000997
Sampler Initials: JFD

CONVENTIONAL PARAMETERS (IMPINGER SOLUTION)

				100000	100010	100011	100010				
Lab BV ID		JS2207	JS2208	JS2209	JS2210	JS2211	JS2212				
Sampling Data		2021/09/14	2021/09/14	2021/09/14	2021/09/14	2021/09/14	2021/09/15				
Sampling Date		14:51	16:25	17:10	17:36	18:42	08:42				
COC Number		n/a	n/a	n/a	n/a	n/a	n/a				
	Units	AQS1	AQS3	AQS4	AQS5	AQS6	AQS9	RDL	QC Batch		
CONVENTIONALS											
Weight of particles	g	0.043	0.022	0.021	0.021	0.016	0.021	0.0010	2235121		
PDI - Parantella Datantina Lini											

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL

Site Location: DS03-4 Your P.O. #: 3000000997 Sampler Initials: JFD

GENERAL COMMENTS

Results relate only to the items tested.			

Report Date: 2021/10/13

TATA STEEL MINERALS CANADA

Client Project #: DUSTFALL
Site Location: DS03-4
Your P.O. #: 3000000997
Sampler Initials: JFD

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2235121	PS5	Spiked Blank	Weight of particles	2021/10/12		102	%
2235121	PS5	Spiked Blank DUP	Weight of particles	2021/10/12		102	%
2235121	PS5	Method Blank	Weight of particles	2021/10/12	<0.0010		g
2239545	AT7	Spiked Blank	Antimony (Sb)	2021/10/13		87	%
			Silver (Ag)	2021/10/13		86	%
			Arsenic (As)	2021/10/13		89	%
			Barium (Ba)	2021/10/13		86	%
			Beryllium (Be)	2021/10/13		98	%
			Cadmium (Cd)	2021/10/13		87	%
			Chromium (Cr)	2021/10/13		86	%
			Copper (Cu)	2021/10/13		83	%
			Manganese (Mn)	2021/10/13		83	%
			Mercury (Hg)	2021/10/13		87	%
			Nickel (Ni)	2021/10/13		86	%
			Lead (Pb)	2021/10/13		82	%
			Thallium (Tl)	2021/10/13		83	%
			Vanadium (V)	2021/10/13		86	%
			Zinc (Zn)	2021/10/13		88	%
2239545	AT7	Method Blank	Antimony (Sb)	2021/10/13	<0.1		ug
			Silver (Ag)	2021/10/13	<0.5		ug
			Arsenic (As)	2021/10/13	<0.1		ug
			Barium (Ba)	2021/10/13	<0.05		ug
			Beryllium (Be)	2021/10/13	<0.05		ug
			Cadmium (Cd)	2021/10/13	<0.05		ug
			Chromium (Cr)	2021/10/13	<0.1		ug
			Copper (Cu)	2021/10/13	0.3,		ug
					RDL=0.1		
			Manganese (Mn)	2021/10/13	<0.1		ug
			Mercury (Hg)	2021/10/13	<0.05		ug
			Nickel (Ni)	2021/10/13	<0.1		ug
			Lead (Pb)	2021/10/13	<0.5		ug
			Thallium (TI)	2021/10/13	<0.1		ug
			Vanadium (V)	2021/10/13	<0.2		ug
			Zinc (Zn)	2021/10/13	0.4,		ug
					RDL=0.1		

RDL = Reportable Detection Limit

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

TATA STEEL MINERALS CANADA

Client Project #: DUSTFALL
Site Location: DS03-4
Your P.O. #: 3000000997
Sampler Initials: JFD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Shu Yang 2008-014

shitay

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997 Your Project #: DUSTFALL Site#: DS03 + DS04 Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2022/01/26

Report #: R2730692 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C200221 Received: 2021/12/16, 08:45 Sample Matrix: Impinger Solution

Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Weight of particles	5	2022/01/19	2022/01/24	STL SOP-00020	MA100–Part. 1.0 R4 m
Extractable Metals in Impinger	5	2022/01/25	2022/01/25	STL SOP-00075	MA.200–Mét. 1.2 R5 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Your P.O. #: 3000000997 Your Project #: DUSTFALL Site#: DS03 + DS04 Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST **BUREAU 1120** MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2022/01/26

Report #: R2730692 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C200221 Received: 2021/12/16, 08:45

Encryption Key

Martine Lepage Project Manager and Account Manager 27 Jan 2022 15:05:28

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL

Your P.O. #: 3000000997 Sampler Initials: JMC

METALS (IMPINGER SOLUTION)

Lab BV ID		KB0926	KB0927	KB0928	KB0929	KB0930				
LAD BY ID										
Sampling Date		2021/11/21	2021/11/21	2021/11/24		2021/11/20				
		10:52	12:57	09:42	16:18	11:43				
	Units	AQS2	AQS3	AQS4	AQS6	AQS9	RDL	QC Batch		
METALS	WETALS									
Antimony (Sb) †	ug	0.1	0.1	0.1	<0.1	0.1	0.1	2266550		
Silver (Ag) †	ug	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2266550		
Arsenic (As) †	ug	0.3	0.7	0.3	<0.1	0.3	0.1	2266550		
Barium (Ba) †	ug	13.1	12.0	19.8	10.4	16.1	0.05	2266550		
Beryllium (Be) †	ug	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2266550		
Cadmium (Cd) †	ug	0.07	<0.05	0.08	<0.05	<0.05	0.05	2266550		
Chromium (Cr) †	ug	0.7	1.6	1.5	1.0	1.4	0.1	2266550		
Copper (Cu) †	ug	3.4	3.5	3.8	9.3	3.2	0.1	2266550		
Manganese (Mn) †	ug	60.9	113	30.8	11.5	30.8	0.1	2266550		
Mercury (Hg) †	ug	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2266550		
Nickel (Ni) †	ug	3.1	1.1	1.4	1.3	1.1	0.1	2266550		
Lead (Pb) †	ug	1.9	3.9	4.0	1.0	5.1	0.5	2266550		
Thallium (TI) †	ug	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	2266550		
Vanadium (V) †	ug	0.2	0.6	0.3	<0.2	0.4	0.2	2266550		
Zinc (Zn) †	ug	10.2	10.8	20.7	17.2	18.8	0.1	2266550		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accreditable

† Parameter is not accreditable

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL

Your P.O. #: 3000000997 Sampler Initials: JMC

CONVENTIONAL PARAMETERS (IMPINGER SOLUTION)

Lab BV ID		KB0926	KB0927	KB0928	KB0929	KB0930		
Sampling Date		2021/11/21	2021/11/21	2021/11/24	2021/11/15	2021/11/20		
Sampling Date		10:52	12:57	09:42	16:18	11:43		
	Units	AQS2	AQS3	AQS4	AQS6	AQS9	RDL	QC Batch
CONVENTIONALS								
Weight of particles in liquid †	g	0.032	0.034	0.046	0.0031	0.036	0.0010	2265212
Weight of particles in liquid † RDL = Reportable Detection Lir		0.032	0.034	0.046	0.0031	0.036	0.0010	2265212

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL Your P.O. #: 3000000997 Sampler Initials: JMC

GENERAL COMMENTS

Extractable Metals in Impinger: Holding time for mercury already passed upon reception.: KB0926, KB0927, KB0928, KB0929, KB0930

Results relate only to the items tested.

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL

Your P.O. #: 3000000997 Sampler Initials: JMC

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2265212	SAT	Spiked Blank	Weight of particles in liquid	2022/01/24		101	%
2265212	SAT	Method Blank	Weight of particles in liquid	2022/01/24	<0.0010		g
2266550	EBO	Spiked Blank	Antimony (Sb)	2022/01/25		101	%
			Silver (Ag)	2022/01/25		54 (1)	%
			Arsenic (As)	2022/01/25		95	%
			Barium (Ba)	2022/01/25		93	%
			Beryllium (Be)	2022/01/25		97	%
			Cadmium (Cd)	2022/01/25		92	%
			Chromium (Cr)	2022/01/25		93	%
			Copper (Cu)	2022/01/25		93	%
			Manganese (Mn)	2022/01/25		93	%
			Mercury (Hg)	2022/01/25		95	%
			Nickel (Ni)	2022/01/25		94	%
			Lead (Pb)	2022/01/25		98	%
			Thallium (TI)	2022/01/25		100	%
			Vanadium (V)	2022/01/25		93	%
			Zinc (Zn)	2022/01/25		96	%
2266550	EBO	Method Blank	Antimony (Sb)	2022/01/25	<0.1		ug
			Silver (Ag)	2022/01/25	<0.5		ug
			Arsenic (As)	2022/01/25	<0.1		ug
			Barium (Ba)	2022/01/25	<0.05		ug
			Beryllium (Be)	2022/01/25	<0.05		ug
			Cadmium (Cd)	2022/01/25	<0.05		ug
			Chromium (Cr)	2022/01/25	0.2, RDL=0.1		ug
			Copper (Cu)	2022/01/25	0.5 <i>,</i> RDL=0.1		ug
			Manganese (Mn)	2022/01/25	<0.1		ug
			Mercury (Hg)	2022/01/25	<0.05		ug
			Nickel (Ni)	2022/01/25	<0.1		ug
			Lead (Pb)	2022/01/25	1.6, RDL=0.5		ug
			Thallium (TI)	2022/01/25	<0.1		ug
			Vanadium (V)	2022/01/25	<0.1		ug
			Zinc (Zn)	2022/01/25	0.8,		ug
			(E11)	2022/01/23	RDL=0.1		чб

RDL = Reportable Detection Limit

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

TATA STEEL MINERALS CANADA Client Project #: DUSTFALL Your P.O. #: 3000000997 Sampler Initials: JMC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Shu Yang 2008-014 Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Sample ID	Start date – time (mm-dd)	End date – time (mm-dd)	# of days sampled	Area sampled (m²)	Insoluble dust (mg)	Soluble dust (mg)	Total dust (mg)	Insoluble dust deposition (g/m²/30d)	Soluble dust deposition (g/m²/30d)	Total Dust deposition rate (g/m²/30d)	Comments
AQS1	6-28 - 12:45 PM	8-1 - 9:22 AM	34	0.017672	5.8	15.2	21	0.29080	0.76209	1.05288	
AQS2	6-28 - 12:15 PM	8-1 - 9:54 AM	34	0.017672	17.4	7.2	24.6	0.87128	0.36053	1.23181	
AQS3	6-28 - 1:35 PM	8-1 - 1:11 PM	34	0.017672	17.2	9.6	26.8	0.85921	0.47956	1.33877	
AQS4	6-28- 2:25 PM	8-1 - 4:00 PM	34	0.017672	2.2	9.2	11.4	0.10963	0.45846	0.56809	
AQS5	6-28 - 3:15 PM	8-1 - 3:39 PM	34	0.017672	0	6.4	6.4	0.00000	0.31939	0.31939	
AQS6	6-30 - 5:40 PM	8-1 - 5:15 PM	32	0.017672	3	4	7	0.15924	0.21232	0.37155	
AQS9	6-28 - 9:45 AM	8-2 - 8:24 AM	35	0.017672	4.2	8.4	12.6	0.20404	0.40808	0.61212	
AQS1	8-1 - 9:22 AM	9-14 - 2:51 PM	44	0.017672			43.0	0.00000	0.00000	1.65045	
AQS2	8-1 - 9:54 AM			0.017672							Bear damaged
AQS3	8-1 - 1:11 PM	9-14 - 4:25 PM	44	0.017672			22.0	0.00000	0.00000	0.84621	
AQS4	8-1 - 4:00 PM	9-14 - 5:10 PM	44	0.017672			21.0	0.00000	0.00000	0.80932	
AQS5	8-1 - 3:39 PM	9-14 - 5:36 PM	44	0.017672			21.0	0.00000	0.00000	0.80873	
AQS6	8-1 - 5:15 PM	9-14 - 6:42 PM	44	0.017672			12.0	0.00000	0.0000	0.46235	
AQS9	8-2 - 8:24 AM	9-15 - 8:42 AM	44	0.017672			21.0	0.00000	0.00000	0.80999	
AQS1-	9-14 - 2:51 PM										Inaccessible
AQS2	9-15 - 3:52 PM	10-10 - 12:00 PM	25	0.017672			32.0	0.00000	0.00000	2.18702	
AQS3	9-14 - 4:25 PM	10-10 - 12:00 PM	25	0.017672			34.0	0.00000	0.00000	2.23576	
AQS4	9-14 - 5:10 PM	10-10 - 12:00 PM	25	0.017672			46.0	0.00000	0.00000	3.02852	
AQS5	9-14 - 5:36 PM	10-10 - 12:00 PM	26	0.017672			0.0	0.00000	0.00000	0.00000	
AQS6	9-14 - 6:42 PM	10-10 - 12:00 PM	26	0.017672			3.1	0.00000	0.00000	0.20460	
AQS9	9-15 - 8:42 AM	10-10 - 12:00 PM	25	0.017672			36.0	0.00000	0.00000	2.43117	

Notes: AQ : Air Quality, # : number

Appendix XI. Certificates of analysis – PM2.5 and total particulate matter

Your P.O. #: 3000000997

Site#: DSO3-4

Site Location: TPM - AIR MONITORING

Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/07/22

Report #: R2675586 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C136209 Received: 2021/07/15, 09:00

Sample Matrix: Filter # Samples Received: 5

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Total Particulate	5 2021/07/2	2 2021/07/2	2 STL SOP-00045	MA100– Part 1.0 R4 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Your P.O. #: 3000000997

Site#: DSO3-4

Site Location: TPM - AIR MONITORING

Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST **BUREAU 1120** MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/07/22

Report #: R2675586 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C136209 Received: 2021/07/15, 09:00

Encryption Key

Martine Lepage Project Manager and Account Manager 23 Jul 2021 08:42:08

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TATA STEEL MINERALS CANADA

Site Location: $\ \ \ \mathsf{TPM}$ - $\mathsf{AIR}\ \mathsf{MONITORING}$

Your P.O. #: 3000000997 Sampler Initials: JM

CONVENTIONAL PARAMETERS (FILTER)

Lab BV ID		JK3625	JK3626	JK3627					
Sampling Date		2021/06/28 12:15	2021/06/29 16:35	2021/06/30 17:50					
	Units	AQS2-TPM (JB3321-01)	AQS4-TPM (JB3312-01)	AQS6-TPM (JB3306-01)	RDL	QC Batch			
CONVENTIONALS									
Weight of filter	g	0.0177	0.0163	0.0209	0.0002	2210906			
Weight of filter and sample	g	0.0175	0.0165	0.0210	0.0002	2210906			
Total particles	g	<0.0002	0.0002	<0.0002	0.0002	2210906			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Lab BV ID		JK3628	JK3629							
Sampling Date		2021/07/10 16:15	2021/07/11 18:00							
	Units	AQS2-TPM (JB3300-01)	AQS4-TPM (JB3316-01)	RDL	QC Batch					
CONVENTIONALS										
Weight of filter	g	0.0191	0.0166	0.0002	2210906					
Weight of filter and sample	g	0.0196	0.0166	0.0002	2210906					
Total particles	g	0.0005	<0.0002	0.0002	2210906					
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

TATA STEEL MINERALS CANADA
Site Location: TPM - AIR MONITORING

Your P.O. #: 3000000997 Sampler Initials: JM

GENERAL COMMENTS

CONVENTIONAL PARAMETERS (FILTER)

sample jk3625-01 and jk3626-01 are damage it may change the result.

Results relate only to the items tested.

TATA STEEL MINERALS CANADA
Site Location: TPM - AIR MONITORING

Your P.O. #: 3000000997 Sampler Initials: JM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Shu Yang 2008-014

shyony

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997

Your Project #: TPM MONITORING

Site#: DS03-4

Your C.O.C. #: C#808542-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/09/01

Report #: R2686802 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C145330 Received: 2021/08/30, 12:00

Sample Matrix: Filter # Samples Received: 3

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Total Particulate	3 2021/09/0	1 2021/09/0	1 STL SOP-00045	MA100- Part 1.0 R4 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Your P.O. #: 3000000997

Your Project #: TPM MONITORING

Site#: DS03-4

Your C.O.C. #: C#808542-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST **BUREAU 1120** MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/09/01

Report #: R2686802 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C145330 Received: 2021/08/30, 12:00

Encryption Key

Martine Lepage Project Manager and Account Manager 02 Sep 2021 14:37:14

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TATA STEEL MINERALS CANADA Client Project #: TPM MONITORING

Your P.O. #: 3000000997 Sampler Initials: JFO

CONVENTIONAL PARAMETERS (FILTER)

Lab BV ID		JP3013	JP3014	JP3015					
Sampling Date		2021/08/02	2021/08/09	2021/08/07					
		17:00	08:35	17:25					
COC Number		C#808542-01-01	C#808542-01-01	C#808542-01-01					
	Units	AQS6-TPM (JB3296-01)	AQS4-TPM (JL1823-01)	AQS2-TPM (JB3299-01)	RDL	QC Batch			
CONVENTIONALS									
Weight of filter	g	0.0190	0.0157	0.0193	0.0002	2225657			
Weight of filter and sample	g	0.0192	0.0152	0.0198	0.0002	2225657			
Total particles	g	0.0002	<0.0002	0.0005	0.0002	2225657			
RDL = Reportable Detection Limit									
QC Batch = Quality Control Ba	atch								

TATA STEEL MINERALS CANADA Client Project #: TPM MONITORING Your P.O. #: 3000000997 Sampler Initials: JFO

GENERAL COMMENTS

CONVENTIONAL PARAMETERS (FILTER)

Total Particules: Damaged filter, possible results underestimation for JP3015.

Results relate only to the items tested.

TATA STEEL MINERALS CANADA Client Project #: TPM MONITORING Your P.O. #: 3000000997

Sampler Initials: JFO

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Shu Yang 2008-014 C C Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Appendix XII. Certificates of analysis – acid rock drainage

Your P.O. #: 3000000730 Your Project #: GOOWOOD Site Location: ARD Your C.O.C. #: 789989-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/04/19

Report #: R2649285 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C103861 Received: 2021/01/29, 09:30

Sample Matrix: Soil # Samples Received: 15

•		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	5	N/A	N/A		
Grinding	5	N/A	N/A	STL SOP-00019	N/A
Fluoride (free)	5	2021/02/02	2021/02/03	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	5	N/A	2021/02/12	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	10	N/A	2021/02/08	STL SOP-00038	SM 23 4500-F m
Water Leachate (CTEU - 9)	5	2021/02/05	2021/02/12	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	5	2021/02/04	2021/02/05	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	5	2021/02/02	2021/02/03	STL SOP-00069	MA.200–Mét. 1.2 R5 m
Metals - Leached	5	2021/02/12	2021/02/14	STL SOP-00062	MA.200–Mét. 1.2 R5 m
Metals - Leached	5	2021/02/04	2021/02/05	STL SOP-00062	MA.200–Mét. 1.2 R5 m
Metals - Leached	2	2021/02/05	2021/02/08	STL SOP-00062	MA.200–Mét. 1.2 R5 m
Metals - Leached	3	2021/02/05	2021/02/09	STL SOP-00062	MA.200–Mét. 1.2 R5 m
Nitrate and/or Nitrite- Leached	5	N/A	2021/02/14	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	10	N/A	2021/02/05	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	5	2021/02/02	2021/02/03	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	5	2021/02/03	2021/02/04	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your P.O. #: 3000000730 Your Project #: GOOWOOD Site Location: ARD

Your C.O.C. #: 789989-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/04/19

Report #: R2649285 Version: 1 - Final

CERTIFICATE OF ANALYSIS

<u>LAB BV JOB #: C103861</u> Received: 2021/01/29, 09:30

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Laboratoires Bureau Veritas - Burnaby

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Martine Lepage Project Manager and Account Manager 26 Apr 2021 10:05:35

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Report Date: 2021/04/19

TATA STEEL MINERALS CANADA Client Project #: GOOWOOD

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					IU3150		IU3219		IU3220		IU3221		
Sampling Date					2021/01/03		2021/01/03		2021/01/26		2021/01/26		
COC Number					789989-01-01		789989-01-01		789989-01-01		789989-01-01		
	Units	Α	В	С	TCMC-37467	RDL	TCMC-37468	RDL	TCMC-81073	RDL	TCMC-81074	RDL	QC Batch
% MOISTURE	%	-	-	-	16	N/A	13	N/A	0.2	N/A	3.3	N/A	N/A
METALS													
Silver (Ag)	mg/kg	2	20	40	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	2162013
Arsenic (As)	mg/kg	6	30	50	3.0	2.0	2.1	2.0	6.8	2.0	4.4	2.0	2162013
Barium (Ba)	mg/kg	340	500	2000	<4.0	4.0	<4.0	4.0	5.0	4.0	<4.0	4.0	2162013
Boron (B)	mg/kg	ı	-		4.3	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	2162013
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	0.10	<0.10	0.10	<0.10	0.10	<0.10	0.10	2162013
Chromium (Cr)	mg/kg	100	250	800	1.5	1.0	1.5	1.0	1.4	1.0	1.9	1.0	2162013
Copper (Cu)	mg/kg	50	100	500	3.1	1.0	1.9	1.0	2.2	1.0	2.9	1.0	2162013
Cobalt (Co)	mg/kg	25	50	300	3.1	1.0	2.6	1.0	4.1	1.0	4.9	1.0	2162013
Tin (Sn)	mg/kg	5	50	300	4.2	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	2162013
Iron (Fe) †	mg/kg	ı	-		130000	100	66000	10	110000	100	81000	10	2162013
Manganese (Mn)	mg/kg	1000	1000	2200	380	2.0	320	2.0	590	2.0	400	2.0	2162013
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	2162013
Nickel (Ni)	mg/kg	50	100	500	1.0	0.50	0.83	0.50	0.77	0.50	0.81	0.50	2162013
Lead (Pb)	mg/kg	50	500	1000	1.6	1.0	1.5	1.0	1.3	1.0	1.7	1.0	2162013
Selenium (Se)	mg/kg	1	3	10	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	2162013
Uranium (U) †	mg/kg	-	-		<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	2162013
Zinc (Zn)	mg/kg	140	500	1500	6.2	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	2162013

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

TATA STEEL MINERALS CANADA

Client Project #: GOOWOOD

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					IU3222		
Sampling Date					2021/01/26		
COC Number					789989-01-01		
	Units	Α	В	С	TCMC-81075	RDL	QC Batch
% MOISTURE	%	-	-	-	4.8	N/A	N/A
METALS							
Silver (Ag)	mg/kg	2	20	40	<0.50	0.50	2162013
Arsenic (As)	mg/kg	6	30	50	17	2.0	2162013
Barium (Ba)	mg/kg	340	500	2000	<4.0	4.0	2162013
Boron (B)	mg/kg	-	-	-	3.0	2.0	2162013
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	0.10	2162013
Chromium (Cr)	mg/kg	100	250	800	2.1	1.0	2162013
Copper (Cu)	mg/kg	50	100	500	1.6	1.0	2162013
Cobalt (Co)	mg/kg	25	50	300	1.1	1.0	2162013
Tin (Sn)	mg/kg	5	50	300	<1.0	1.0	2162013
Iron (Fe) †	mg/kg	-	•	-	140000	100	2162013
Manganese (Mn)	mg/kg	1000	1000	2200	210	2.0	2162013
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	0.50	2162013
Nickel (Ni)	mg/kg	50	100	500	1.4	0.50	2162013
Lead (Pb)	mg/kg	50	500	1000	4.4	1.0	2162013
Selenium (Se)	mg/kg	1	3	10	<0.50	0.50	2162013
Uranium (U) †	mg/kg	-	-	-	<2.0	2.0	2162013
Zinc (Zn)	mg/kg	140	500	1500	9.1	5.0	2162013

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

METALS-LAB LEACHATE (SOIL)

Lab BV ID		IU3150	IU3219	IU3220	IU3221	IU3222		
Sampling Date		2021/01/03	2021/01/03	2021/01/26	2021/01/26	2021/01/26		
COC Number		789989-01-01	789989-01-01	789989-01-01	789989-01-01	789989-01-01		
	Units	TCMC-37467	TCMC-37468	TCMC-81073	TCMC-81074	TCMC-81075	RDL	QC Batch
% MOISTURE	%	16	13	0.2	3.3	4.8	N/A	N/A
METALS								
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	2162696
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2162696
Barium (Ba)	ug/L	5.6	7.3	8.1	10	8.6	5.0	2162696
Boron (B)	ug/L	<50	<50	<50	<50	<50	50	2162696
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2162696
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	<7.0	<7.0	7.0	2162696
Cobalt (Co)	ug/L	<10	<10	<10	<10	<10	10	2162696
Copper (Cu)	ug/L	<3.0	<3.0	<3.0	<3.0	<3.0	3.0	2162696
Tin (Sn) †	ug/L	<50	<50	<50	<50	<50	50	2162696
Iron (Fe)	ug/L	110	<100	<100	<100	<100	100	2162696
Manganese (Mn)	ug/L	68	86	310	260	67	3.0	2162696
Molybdenum (Mo)	ug/L	<10	<10	<10	<10	<10	10	2162696
Nickel (Ni)	ug/L	<6.0	<6.0	<6.0	<6.0	<6.0	6.0	2162696
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2162696
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2162696
Uranium (U)	ug/L	<0.60	<0.60	<0.60	<0.60	<0.60	0.60	2162696
Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	2162696

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

METALS-LAB LEACHATE (SOIL)

Lab BV ID		IU3223	IU3363	IU3364	IU3365		
Sampling Date		2021/01/03	2021/01/03	2021/01/03	2021/01/03		
COC Number		789989-01-01	789989-01-01	789989-01-01	789989-01-01		
	Units	TCMC-37467-CTEU-9	TCMC-37468-CTEU-9	TCMC-81073-CTEU-9	TCMC-81074-CTEU-9	RDL	QC Batch
METALS							
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	<0.30	0.30	2164537
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	2164537
Barium (Ba)	ug/L	<5.0	<5.0	<5.0	8.1	5.0	2164537
Boron (B)	ug/L	<50	57	<50	<50	50	2164537
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2164537
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	<7.0	7.0	2164537
Cobalt (Co)	ug/L	<10	<10	<10	<10	10	2164537
Copper (Cu)	ug/L	<3.0	<3.0	<3.0	<3.0	3.0	2164537
Tin (Sn) †	ug/L	<50	<50	<50	<50	50	2164537
Iron (Fe)	ug/L	<100	<100	<100	<100	100	2164537
Manganese (Mn)	ug/L	13	100	71	42	3.0	2164537
Molybdenum (Mo)	ug/L	<10	<10	<10	<10	10	2164537
Nickel (Ni)	ug/L	<6.0	<6.0	<6.0	<6.0	6.0	2164537
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2164537
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2164537
Uranium (U)	ug/L	<0.60	<0.60	<0.60	<0.60	0.60	2164537
Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	2164537

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

METALS-LAB LEACHATE (SOIL)

			I								
Lab BV ID		IU3366		IU3378	IU3388						
Sampling Date		2021/01/03		2021/01/03	2021/01/03						
COC Number		789989-01-01		789989-01-01	789989-01-01						
	Units	TCMC-81075-CTEU-9	QC Batch	TCMC-37467- (SPLP1312)	TCMC-37468- (SPLP1312)	RDL	QC Batch				
METALS											
Silver (Ag) †	ug/L	<0.30	2164537	<0.30	<0.30	0.30	2162995				
Arsenic (As)	ug/L	<2.0	2164537	<2.0	<2.0	2.0	2162995				
Barium (Ba)	ug/L	<5.0	2164537	<5.0	<5.0	5.0	2162995				
Boron (B)	ug/L	<50	2164537	<50	<50	50	2162995				
Cadmium (Cd)	ug/L	<1.0	2164537	<1.0	<1.0	1.0	2162995				
Chromium (Cr)	ug/L	<7.0	2164537	<7.0	<7.0	7.0	2162995				
Cobalt (Co)	ug/L	<10	2164537	<10	<10	10	2162995				
Copper (Cu)	ug/L	<3.0	2164537	<3.0	<3.0	3.0	2162995				
Tin (Sn) †	ug/L	<50	2164537	<50	<50	50	2162995				
Iron (Fe)	ug/L	<100	2164537	<100	<100	100	2162995				
Manganese (Mn)	ug/L	<3.0	2164537	12	17	3.0	2162995				
Molybdenum (Mo)	ug/L	<10	2164537	<10	<10	10	2162995				
Nickel (Ni)	ug/L	<6.0	2164537	<6.0	<6.0	6.0	2162995				
Lead (Pb)	ug/L	<1.0	2164537	<1.0	<1.0	1.0	2162995				
Selenium (Se)	ug/L	<1.0	2164537	<1.0	<1.0	1.0	2162995				
Uranium (U)	ug/L	<0.60	2164537	<0.60	<0.60	0.60	2162995				
Zinc (Zn)	ug/L	<5.0	2164537	<5.0	<5.0	5.0	2162995				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

METALS-LAB LEACHATE (SOIL)

	IU3389	IU3390	1112201					
	103383	103390	IU3391					
	2021/01/03	2021/01/03	2021/01/03					
	789989-01-01	789989-01-01	789989-01-01					
Units	TCMC-81073- (SPLP1312)	TCMC-81074- (SPLP1312)	TCMC-81075- (SPLP1312)	RDL	QC Batch			
METALS								
ug/L	<0.30	<0.30	<0.30	0.30	2162995			
ug/L	<2.0	<2.0	<2.0	2.0	2162995			
ug/L	<5.0	<5.0	<5.0	5.0	2162995			
ug/L	<50	<50	<50	50	2162995			
ug/L	<1.0	<1.0	<1.0	1.0	2162995			
ug/L	<7.0	<7.0	<7.0	7.0	2162995			
ug/L	<10	<10	<10	10	2162995			
ug/L	<3.0	<3.0	<3.0	3.0	2162995			
ug/L	<50	<50	<50	50	2162995			
ug/L	<100	<100	<100	100	2162995			
ug/L	57	73	10	3.0	2162995			
ug/L	<10	<10	<10	10	2162995			
ug/L	<6.0	<6.0	<6.0	6.0	2162995			
ug/L	<1.0	<1.0	<1.0	1.0	2162995			
ug/L	<1.0	<1.0	<1.0	1.0	2162995			
ug/L	<0.60	<0.60	<0.60	0.60	2162995			
ug/L	<5.0	<5.0	<5.0	5.0	2162995			
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	T89989-01-01 Units TCMC-81073- (SPLP1312) ug/L <0.30	T89989-01-01 789989-01-01 Units TCMC-81073- (SPLP1312) TCMC-81074- (SPLP1312) ug/L <0.30	Vision 789989-01-01 789989-01-01 789989-01-01 Units TCMC-81073- (SPLP1312) TCMC-81074- (SPLP1312) TCMC-81075- (SPLP1312) Ug/L <0.30 <0.30 <0.30 ug/L <2.0 <2.0 <2.0 ug/L <5.0 <5.0 <5.0 ug/L <50 <50 <50 ug/L <1.0 <1.0 <1.0 ug/L <7.0 <7.0 <7.0 ug/L <1.0 <1.0 <1.0 ug/L <3.0 <3.0 <3.0 ug/L <50 <50 <50 ug/L <1.00 <1.00 <1.00 ug/L <1.0 <1.0 <1.0 ug/L	Vision 789989-01-01 789989-01-01 789989-01-01 789989-01-01 789989-01-01 RDL Units TCMC-81073- (SPLP1312) TCMC-81074- (SPLP1312) TCMC-81075- (SPLP1312) RDL Ug/L <0.30			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab BV Job #: C103861TATA STEEL MINERALS CANADAReport Date: 2021/04/19Client Project #: GOOWOOD

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					IU3150	IU3219	IU3220	IU3221	IU3222		
Sampling Date					2021/01/03	2021/01/03	2021/01/26	2021/01/26	2021/01/26		
COC Number					789989-01-01	789989-01-01	789989-01-01	789989-01-01	789989-01-01		
	Units	Α	В	С	TCMC-37467	TCMC-37468	TCMC-81073	TCMC-81074	TCMC-81075	RDL	QC Batch
% MOISTURE	%	-	-	-	16	13	0.2	3.3	4.8	N/A	N/A
CONVENTIONALS	•										
Fluoride (F)	mg/kg	200	400	2000	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2162023
Nitrates (N-NO3-) †	mg/kg	-	-		1.0	1.6	<1.0	2.1	<1.0	1.0	2162025
Nitrites (N-NO2-) †	mg/kg	-	-		<0.20	<0.20	<0.20	<0.20	<0.20	0.20	2162025
Nitrate (N) and Nitrite(N)	mg/kg	-	-		1.0	1.6	<1.0	2.1	<1.0	1.0	2162025

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

	IU3150	IU3219	IU3220	IU3221	IU3222		
	2021/01/03	2021/01/03	2021/01/26	2021/01/26	2021/01/26		
	789989-01-01	789989-01-01	789989-01-01	789989-01-01	789989-01-01		
Units	TCMC-37467	TCMC-37468	TCMC-81073	TCMC-81074	TCMC-81075	RDL	QC Batch
%	16	13	0.2	3.3	4.8	N/A	N/A
mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2162851
mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	2162847
mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	2162847
mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	2162847
	% mg/L mg/L	2021/01/03 789989-01-01 Units TCMC-37467 % 16 mg/L <1.0 mg/L <0.20 mg/L <0.20	2021/01/03 2021/01/03 789989-01-01 789989-01-01 Units TCMC-37467 TCMC-37468	2021/01/03 2021/01/03 2021/01/26 789989-01-01 789989-01-01 789989-01-01	2021/01/03 2021/01/03 2021/01/26 2021/01/26 789989-01-01 789989-01-01 789989-01-01 789989-01-01 Units TCMC-37467 TCMC-37468 TCMC-81073 TCMC-81074	2021/01/03 2021/01/03 2021/01/26 2021/01/26 2021/01/26 789989-01-01 78989-01-01 78989	2021/01/03 2021/01/03 2021/01/26 2021/01/26 2021/01/26 789989-01-01 78989-01-01 789989-01-01

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		IU3223	IU3363	IU3364	IU3365						
Sampling Date		2021/01/03	2021/01/03	2021/01/03	2021/01/03						
COC Number		789989-01-01	789989-01-01	789989-01-01	789989-01-01						
	Units	TCMC-37467-CTEU-9	TCMC-37468-CTEU-9	TCMC-81073-CTEU-9	TCMC-81074-CTEU-9	RDL	QC Batch				
CONVENTIONALS											
Fluoride (F)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0	2164627				
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	<0.20	<0.20	0.20	2164731				
Nitrates (N-NO3-)	mg/L	0.47	<0.20	<0.20	0.45	0.20	2164731				
Nitrate (N) and Nitrite(N)	mg/L	0.47	<0.20	<0.20	0.45	0.20	2164731				
RDL = Reportable Detection	Limit	-									

QC Batch = Quality Control Batch

Lab BV ID		IU3366		IU3378	IU3388					
Sampling Date		2021/01/03		2021/01/03	2021/01/03					
COC Number		789989-01-01		789989-01-01	789989-01-01					
	Units	TCMC-81075-CTEU-9	QC Batch	TCMC-37467- (SPLP1312)	TCMC-37468- (SPLP1312)	RDL	QC Batch			
CONVENTIONALS	CONVENTIONALS									
Fluoride (F)	mg/L	<1.0	2164627	<1.0	<1.0	1.0	2162957			
Nitrites (N-NO2-)	mg/L	<0.20	2164731	<0.20	<0.20	0.20	2162953			
Nitrates (N-NO3-)	mg/L	<0.20	2164731	N/A	N/A	0.20	N/A			
Nitrate (N) and Nitrite(N)	mg/L	<0.20	2164731	N/A	N/A	0.20	N/A			
	-									

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		IU3389	IU3390	IU3391	·	·
Sampling Date		2021/01/03	2021/01/03	2021/01/03		
COC Number		789989-01-01	789989-01-01	789989-01-01		
	Units	TCMC-81073- (SPLP1312)	TCMC-81074- (SPLP1312)	TCMC-81075- (SPLP1312)	RDL	QC Batch
CONVENTIONALS						
Fluoride (F)	mg/L	<1.0	<1.0	<1.0	1.0	2162957
1 ' '	, O,					
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	<0.20	0.20	2162953
` ′	mg/L	<0.20	<0.20	<0.20	0.20	2162953

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

TCLP-EPA 1311 (SOIL)

Lab BV ID		IU3150	IU3219	IU3220	IU3221	IU3222	
Sampling Date		2021/01/03	2021/01/03	2021/01/26	2021/01/26	2021/01/26	
COC Number		789989-01-01	789989-01-01	789989-01-01	789989-01-01	789989-01-01	
	Units	TCMC-37467	TCMC-37468	TCMC-81073	TCMC-81074	TCMC-81075	QC Batch
% MOISTURE	%	16	13	0.2	3.3	4.8	N/A
Leachates	-						
Weight of sample (g)	n/a	20.1	20.0	20.0	20.0	20.1	2162338
pH of pre-test	n/a	<1.68	<1.68	<1.68	<1.68	<1.68	2162338
pH end of leaching	n/a	4.95	4.93	4.86	4.97	4.96	2162338
Volume extracting fluid 1 (ml)	n/a	400	400	400	400	400	2162338

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

SPLP-EPA 1312 (SOIL)

Lab BV ID		IU3378	IU3388	IU3389					
Sampling Date		2021/01/03	2021/01/03	2021/01/03					
COC Number		789989-01-01	789989-01-01	789989-01-01					
	Units	TCMC-37467- (SPLP1312)	TCMC-37468- (SPLP1312)	TCMC-81073- (SPLP1312)	QC Batch				
Leachates	Leachates								
Weight of sample (g)	n/a	25.0	25.0	25.0	2162721				
Volume of extracting fluid (mL)	n/a	500	500	500	2162721				
pH after 18 hours leaching	n/a	5.69	5.63	5.39	2162721				
QC Batch = Quality Control Batch	 1								

Lab BV ID		IU3390	IU3391	
Sampling Date		2021/01/03	2021/01/03	
COC Number		789989-01-01	789989-01-01	
	Units	TCMC-81074- (SPLP1312)	TCMC-81075- (SPLP1312)	QC Batch
Leachates				
Weight of sample (g)	n/a	25.0	25.0	2162721
Volume of extracting fluid (mL)	n/a	500	500	2162721
volume of extracting fluid (mL)	11/a	300	300	2102721
pH after 18 hours leaching	n/a	5.60	5.43	2162721

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		IU3223	IU3363	IU3364	IU3365					
Sampling Date		2021/01/03	2021/01/03	2021/01/03	2021/01/03					
COC Number		789989-01-01	789989-01-01	789989-01-01	789989-01-01					
	Units	TCMC-37467-CTEU-9	TCMC-37468-CTEU-9	TCMC-81073-CTEU-9	TCMC-81074-CTEU-9	QC Batch				
Leachates										
Weight of sample (g)	n/a	40.1	40.0	40.1	40.0	2162852				
pH Deionized water	n/a	5.45	5.45	5.45	5.45	2162852				
Date extraction fluid added	n/a	2021/02/05	2021/02/05	2021/02/05	2021/02/05	2162852				
Date leaching terminated	n/a	2021/02/12	2021/02/12	2021/02/12	2021/02/12	2162852				
Volume of extracting fluid (mL)	n/a	160	160	160	160	2162852				
pH after 7 days of leaching	n/a	6.74	6.86	6.89	6.95	2162852				
QC Batch = Quality Control Batch	1			-	-					

Lab BV ID		IU3366	
Sampling Date		2021/01/03	
COC Number		789989-01-01	
	Units	TCMC-81075-CTEU-9	QC Batch
Leachates			
Weight of sample (g)	n/a	40.0	2162852
pH Deionized water	n/a	5.45	2162852
Date extraction fluid added	n/a	2021/02/05	2162852
Date leaching terminated	n/a	2021/02/12	2162852
Volume of extracting fluid (mL)	n/a	160	2162852
pH after 7 days of leaching	n/a	7.31	2162852
QC Batch = Quality Control Batch	1		

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, 2019." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

TOTAL EXTRACTABLE METALS (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

TCLP-EPA 1311 (SOIL)

pH du pré-test: Veuillez noter que le résultat de l'échantillon est en dehors de la courbe de calibration (pH 4 - 10), et aussi dehors des limites de la linéarité (pH 1.68 - 13.0).

Results relate only to the items tested.

Report Date: 2021/04/19

TATA STEEL MINERALS CANADA Client Project #: GOOWOOD

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2162013	KK	Spiked Blank	Silver (Ag)	2021/02/03		82	%
		•	Arsenic (As)	2021/02/03		95	%
			Barium (Ba)	2021/02/03		93	%
			Boron (B)	2021/02/03		104	%
			Cadmium (Cd)	2021/02/03		90	%
			Chromium (Cr)	2021/02/03		92	%
			Copper (Cu)	2021/02/03		93	%
			Cobalt (Co)	2021/02/03		92	%
			Tin (Sn)	2021/02/03		96	%
			Iron (Fe)	2021/02/03		96	%
			Manganese (Mn)	2021/02/03		93	%
			Molybdenum (Mo)	2021/02/03		91	%
			Nickel (Ni)	2021/02/03		93	%
			Lead (Pb)	2021/02/03		93	%
			Selenium (Se)	2021/02/03		94	%
			Uranium (U)	2021/02/03		91	%
			Zinc (Zn)	2021/02/03		93	%
2162013	KK	Method Blank	Silver (Ag)	2021/02/03	<0.50		mg/kg
			Arsenic (As)	2021/02/03	<2.0		mg/kg
			Barium (Ba)	2021/02/03	<4.0		mg/kg
			Boron (B)	2021/02/03	<2.0		mg/kg
			Cadmium (Cd)	2021/02/03	<0.10		mg/kg
			Chromium (Cr)	2021/02/03	<1.0		mg/kg
			Copper (Cu)	2021/02/03	<1.0		mg/kg
			Cobalt (Co)	2021/02/03	<1.0		mg/kg
			Tin (Sn)	2021/02/03	<1.0		mg/kg
			Iron (Fe)	2021/02/03	<10		mg/kg
			Manganese (Mn)	2021/02/03	<2.0		mg/kg
			Molybdenum (Mo)	2021/02/03	<0.50		mg/kg
			Nickel (Ni)	2021/02/03	<0.50		mg/kg
			Lead (Pb)	2021/02/03	<1.0		mg/kg
			Selenium (Se)	2021/02/03	<0.50		mg/kg
			Uranium (U)	2021/02/03	<2.0		mg/kg
			Zinc (Zn)	2021/02/03	<5.0		mg/kg
2162023	SBD	Spiked Blank	Fluoride (F)	2021/02/03	\ 3.0	100	%
2162023	SBD	Method Blank	Fluoride (F)	2021/02/03	<1.0	100	mg/kg
2162025	VPA	Spiked Blank	Nitrates (N-NO3-)	2021/02/03	\1.0	104	///g/kg %
2102025	VPA	эрікей ыапк	Nitrites (N-NO2-)	2021/02/03		104	% %
			Nitrate (N) and Nitrite(N)	2021/02/03		100	% %
2162025	\/D	Mothed Plank	Nitrate (N) and Nitrite(N) Nitrates (N-NO3-)	2021/02/03	<1.0	102	
2162025	VPA	Method Blank		2021/02/03			mg/kg
			Nitrites (N-NO2-)		<0.20		mg/kg
2162220	ADI	Mathad Blank	Nitrate (N) and Nitrite(N)	2021/02/03	<1.0		mg/kg
2162338	ABJ	Method Blank	pH end of leaching	2021/02/04	4.96		n/a
2162000	750	LEACH DIANK	Volume extracting fluid 1 (ml)	2021/02/04	400		n/a
2162696	ZEO	LEACH. BLANK	Silver (Ag)	2021/02/05	<0.30		ug/L
			Arsenic (As)	2021/02/05	<2.0		ug/L
			Barium (Ba)	2021/02/05	<5.0		ug/L
			Boron (B)	2021/02/05	<50		ug/L
			Cadmium (Cd)	2021/02/05	<1.0		ug/L
			Chromium (Cr)	2021/02/05	<7.0		ug/L

Report Date: 2021/04/19

TATA STEEL MINERALS CANADA Client Project #: GOOWOOD

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Cobalt (Co)	2021/02/05	<10	•	ug/L
			Copper (Cu)	2021/02/05	8.3,		ug/L
					RDL=3.0		-
			Tin (Sn)	2021/02/05	<50		ug/L
			Iron (Fe)	2021/02/05	<100		ug/L
			Manganese (Mn)	2021/02/05	<3.0		ug/L
			Molybdenum (Mo)	2021/02/05	<10		ug/L
			Nickel (Ni)	2021/02/05	<6.0		ug/L
			Lead (Pb)	2021/02/05	<1.0		ug/L
			Selenium (Se)	2021/02/05	<1.0		ug/L
			Uranium (U)	2021/02/05	<0.60		ug/L
			Zinc (Zn)	2021/02/05	<5.0		ug/L
2162696	ZEO	Spiked Blank	Silver (Ag)	2021/02/05		98	%
			Arsenic (As)	2021/02/05		92	%
			Barium (Ba)	2021/02/05		92	%
			Boron (B)	2021/02/05		89	%
			Cadmium (Cd)	2021/02/05		87	%
			Chromium (Cr)	2021/02/05		87	%
			Cobalt (Co)	2021/02/05		87	%
			Copper (Cu)	2021/02/05		90	%
			Tin (Sn)	2021/02/05		97	%
			Iron (Fe)	2021/02/05		92	%
			Manganese (Mn)	2021/02/05		90	%
			Molybdenum (Mo)	2021/02/05		92	%
			Nickel (Ni)	2021/02/05		86	%
			Lead (Pb)	2021/02/05		88	%
			Selenium (Se)	2021/02/05		155 (1)	%
			Uranium (U)	2021/02/05		89	%
			Zinc (Zn)	2021/02/05		85	%
2162721	ABJ	Method Blank	Volume of extracting fluid (mL)	2021/02/05	500	33	n/a
2102721	7103	Wethou Blank	pH after 18 hours leaching	2021/02/05	4.16		n/a
2162847	VPA	LEACH. BLANK	Nitrites (N-NO2-)	2021/02/05	<0.20		mg/L
2102047	VIA	ELACH. BLANK	Nitrates (N-NO3-)	2021/02/05	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/02/05	<0.20		mg/L
2162847	VPA	Spiked Blank	Nitrites (N-NO2-)	2021/02/05	10.20	103	// // // // // // // // // // // // //
2102047	VIA	Spiked blatik	Nitrates (N-NO3-)	2021/02/05		103	%
			Nitrates (N-NO3-) Nitrate (N) and Nitrite(N)	2021/02/05		103	%
2162851	AJ1	LEACH. BLANK	Fluoride (F)	2021/02/03	<1.0	103	mg/L
2162851	AJ1		Fluoride (F)	2021/02/08	\1.0	103	111g/L %
2162852	SMD	Spiked Blank Method Blank	pH Deionized water	2021/02/03	5.45	105	n/a
2102032	טועונ	Methou Blank	•	2021/02/12			
			Date extraction fluid added	2021/02/12	2021/02/05 2021/02/12		n/a
			Date leaching terminated Volume of extracting fluid (mL)	2021/02/12			n/a
			3 , ,	· ·	160		n/a
2162052	\/D	LEACH DIANK	pH after 7 days of leaching	2021/02/12	6.77		n/a
2162953	VPA	LEACH. BLANK	Nitrites (N-NO2-)	2021/02/05	<0.20	107	mg/L
2162953	VPA	Spiked Blank	Nitrites (N-NO2-)	2021/02/05	.1.0	107	% /
2162957	AJ1	LEACH. BLANK	Fluoride (F)	2021/02/08	<1.0	100	mg/L
2162957	AJ1	Spiked Blank	Fluoride (F)	2021/02/08	0.00	109	%
2162995	ZEO	LEACH. BLANK	Silver (Ag)	2021/02/08	<0.30		ug/L
			Arsenic (As)	2021/02/08	<2.0		ug/L

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				-			
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Barium (Ba)	2021/02/08	<5.0		ug/L
			Boron (B)	2021/02/08	<50		ug/L
			Cadmium (Cd)	2021/02/08	<1.0		ug/L
			Chromium (Cr)	2021/02/08	<7.0		ug/L
			Cobalt (Co)	2021/02/08	<10		ug/L
			Copper (Cu)	2021/02/08	8.1 <i>,</i> RDL=3.0		ug/L
			Tin (Sn)	2021/02/08	<50		ug/L
			Iron (Fe)	2021/02/08	<100		ug/L
			Manganese (Mn)	2021/02/08	<3.0		ug/L
			Molybdenum (Mo)	2021/02/08	<10		ug/L
			Nickel (Ni)	2021/02/08	<6.0		ug/L
			Lead (Pb)	2021/02/08	<1.0		ug/L
			Selenium (Se)	2021/02/08	<1.0		ug/L
			Uranium (U)	2021/02/08	<0.60		ug/L
			Zinc (Zn)	2021/02/08	<5.0		ug/L
2162995	ZEO	Spiked Blank	Silver (Ag)	2021/02/08		99	%
			Arsenic (As)	2021/02/08		104	%
			Barium (Ba)	2021/02/08		101	%
			Boron (B)	2021/02/08		96	%
			Cadmium (Cd)	2021/02/08		101	%
			Chromium (Cr)	2021/02/08		99	%
			Cobalt (Co)	2021/02/08		98	%
			Copper (Cu)	2021/02/08		98	%
			Tin (Sn)	2021/02/08		108	%
			Iron (Fe)	2021/02/08		94	%
			Manganese (Mn)	2021/02/08		103	%
			Molybdenum (Mo)	2021/02/08		101	%
			Nickel (Ni)	2021/02/08		99	%
			Lead (Pb)	2021/02/08		100	%
			Selenium (Se)	2021/02/08		99	%
			Uranium (U)	2021/02/08		100	%
			Zinc (Zn)	2021/02/08		97	%
2164537	JGZ	LEACH. BLANK	Silver (Ag)	2021/02/14	<0.30	3,	ug/L
210 1337	302	ELITORIA DEL TITO	Arsenic (As)	2021/02/14	<2.0		ug/L
			Barium (Ba)	2021/02/14	<5.0		ug/L
			Boron (B)	2021/02/14	<50		ug/L
			Cadmium (Cd)	2021/02/14	<1.0		ug/L
			Chromium (Cr)	2021/02/14	<7.0		ug/L
			Cobalt (Co)	2021/02/14	<10		ug/L
			Copper (Cu)	2021/02/14	<3.0		ug/L
			Tin (Sn)	2021/02/14	<50		ug/L ug/L
			Iron (Fe)	2021/02/14	<100		ug/L ug/L
			Manganese (Mn)	2021/02/14	<3.0		ug/L
			Molybdenum (Mo)	2021/02/14	<10		ug/L ug/L
			Nickel (Ni)	2021/02/14	<6.0		ug/L ug/L
			Lead (Pb)	2021/02/14	<1.0		ug/L ug/L
			Selenium (Se)	2021/02/14	<1.0		ug/L ug/L
			Uranium (U)	2021/02/14 2021/02/14	<0.60		
							ug/L
			Zinc (Zn)	2021/02/14	<5.0		ug/L

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2164537	JGZ	Spiked Blank	Silver (Ag)	2021/02/16		97	%
			Arsenic (As)	2021/02/16		99	%
			Barium (Ba)	2021/02/16		96	%
			Boron (B)	2021/02/16		97	%
			Cadmium (Cd)	2021/02/16		96	%
			Chromium (Cr)	2021/02/16		91	%
			Cobalt (Co)	2021/02/16		92	%
			Copper (Cu)	2021/02/16		89	%
			Tin (Sn)	2021/02/16		105	%
			Iron (Fe)	2021/02/16		91	%
			Manganese (Mn)	2021/02/16		95	%
			Molybdenum (Mo)	2021/02/16		97	%
			Nickel (Ni)	2021/02/16		90	%
			Lead (Pb)	2021/02/16		92	%
			Selenium (Se)	2021/02/16		95	%
			Uranium (U)	2021/02/16		94	%
			Zinc (Zn)	2021/02/16		91	%
2164627	VPA	LEACH. BLANK	Fluoride (F)	2021/02/12	<1.0		mg/L
2164627	VPA	Spiked Blank	Fluoride (F)	2021/02/12		99	%
2164731	VPA	LEACH. BLANK	Nitrites (N-NO2-)	2021/02/14	<0.20		mg/L
			Nitrates (N-NO3-)	2021/02/14	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/02/14	<0.20		mg/L
2164731	VPA	Spiked Blank	Nitrites (N-NO2-)	2021/02/14		104	%
			Nitrates (N-NO3-)	2021/02/14		103	%
			Nitrate (N) and Nitrite(N)	2021/02/14		103	%
2164731	VPA	Method Blank	Nitrites (N-NO2-)	2021/02/14	<0.020		mg/L
			Nitrates (N-NO3-)	2021/02/14	<0.020		mg/L
			Nitrate (N) and Nitrite(N)	2021/02/14	<0.020		mg/L

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

Site Location: ARD Your P.O. #: 3000000730 Sampler Initials: CS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Audrey Mélissa Benoit, B.Sc., Montréal, Team Leader

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

Sameh Bouguedoura, B.Sc., Chemist, Montréal, Analyst II

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000730

Site#: DS04

Site Location: GOODWOOD ARD

Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/04/12

Report #: R2647964 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C107257 Received: 2021/02/19, 09:00

Sample Matrix: Soil # Samples Received: 3

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	1	N/A	N/A		
Grinding	1	N/A	2021/02/25	STL SOP-00019	N/A
Fluoride (free)	1	2021/02/25	2021/02/25	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	2	N/A	2021/02/26	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/03/05	STL SOP-00038	SM 23 4500-F m
Water Leachate (CTEU - 9)	1	2021/02/26	2021/03/05	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	1	2021/02/23	2021/02/24	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	1	2021/02/24	2021/02/24	STL SOP-00069	MA.200–Mét. 1.2 R5 m
Metals - Leached	2	2021/02/24	2021/02/25	STL SOP-00062	MA.200–Mét. 1.2 R5 m
Metals - Leached	1	2021/03/05	2021/03/08	STL SOP-00062	MA.200–Mét. 1.2 R5 m
Nitrate and/or Nitrite- Leached	2	N/A	2021/02/26	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	1	N/A	2021/03/06	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	1	2021/02/25	2021/02/25	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	1	2021/02/23	2021/02/24	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your P.O. #: 3000000730

Site#: DS04

Site Location: GOODWOOD ARD

Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/04/12

Report #: R2647964 Version: 1 - Final

CERTIFICATE OF ANALYSIS

<u>LAB BV JOB #: C107257</u> Received: 2021/02/19, 09:00

dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Laboratoires Bureau Veritas - Burnaby

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Martine Lepage Project Manager and Account Manager

14 Apr 2021 10:54:32

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TATA STEEL MINERALS CANADA
Site Location: GOODWOOD ARD

Your P.O. #: 3000000730 Sampler Initials: EF

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					IV8523			
Sampling Date					2021/02/01			
	Units	Units A		С	TSMC-75262	RDL	QC Batch	
% MOISTURE	%	-	-	-	4.0	N/A	N/A	
METALS								
Silver (Ag)	mg/kg	2	20	40	<0.50	0.50	2166711	
Arsenic (As)	mg/kg	6	30	50	<2.0	2.0	2166711	
Barium (Ba)	mg/kg	340	500	2000	<4.0	4.0	2166711	
Boron (B)	mg/kg	-	-		<2.0	2.0	2166711	
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	0.10	2166711	
Chromium (Cr)	mg/kg	100	250	800	8.0	1.0	2166711	
Copper (Cu)	mg/kg	50	100	500	1.3	1.0	2166711	
Cobalt (Co)	mg/kg	25	50	300	1.8	1.0	2166711	
Tin (Sn)	mg/kg	5	50	300	<1.0	1.0	2166711	
Iron (Fe) †	mg/kg	-	-		42000	10	2166711	
Manganese (Mn)	mg/kg	1000	1000	2200	390	2.0	2166711	
Molybdenum (Mo)	mg/kg	2	10	40	0.97	0.50	2166711	
Nickel (Ni)	mg/kg	50	100	500	1.7	0.50	2166711	
Mercury (Hg)	mg/kg	0.2	2	10	0.022	0.010	2166711	
Lead (Pb)	mg/kg	50	500	1000	1.0	1.0	2166711	
Selenium (Se)	mg/kg	1	3	10	<0.50	0.50	2166711	
Uranium (U) †	mg/kg	-	-		<2.0	2.0	2166711	
Zinc (Zn)	mg/kg	140	500	1500	<5.0	5.0	2166711	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Report Date: 2021/04/12

TATA STEEL MINERALS CANADA
Site Location: GOODWOOD ARD

Your P.O. #: 3000000730 Sampler Initials: EF

METALS-LAB LEACHATE (SOIL)

Lab BV ID		IV8523			IV8524			IV8525		
Sampling Date		2021/02/01			2021/02/01			2021/02/01		
	Units	TSMC-75262	RDL	QC Batch	TSMC-75262 (CTEU-9)	RDL	QC Batch	TSMC-75262 (SPLP1312)	RDL	QC Batch
% MOISTURE	%	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
METALS										
Silver (Ag) †	ug/L	<0.30	0.30	2166884	<0.30	0.30	2168988	<0.30	0.30	2166888
Arsenic (As)	ug/L	<2.0	2.0	2166884	<2.0	2.0	2168988	<2.0	2.0	2166888
Barium (Ba)	ug/L	11	5.0	2166884	<5.0	5.0	2168988	<5.0	5.0	2166888
Boron (B)	ug/L	<50	50	2166884	<50	50	2168988	<50	50	2166888
Cadmium (Cd)	ug/L	<1.0	1.0	2166884	<1.0	1.0	2168988	<1.0	1.0	2166888
Chromium (Cr)	ug/L	<7.0	7.0	2166884	<7.0	7.0	2168988	<7.0	7.0	2166888
Cobalt (Co)	ug/L	<10	10	2166884	<10	10	2168988	<10	10	2166888
Copper (Cu)	ug/L	<3.0	3.0	2166884	<10	10	2168988	<3.0	3.0	2166888
Tin (Sn) †	ug/L	<50	50	2166884	<50	50	2168988	<50	50	2166888
Iron (Fe)	ug/L	180	100	2166884	190	100	2168988	<100	100	2166888
Manganese (Mn)	ug/L	370	3.0	2166884	13	3.0	2168988	93	3.0	2166888
Mercury (Hg)	ug/L	<0.50	0.50	2166884	<0.50	0.50	2168988	<0.50	0.50	2166888
Molybdenum (Mo)	ug/L	<10	10	2166884	<10	10	2168988	<10	10	2166888
Nickel (Ni)	ug/L	<6.0	6.0	2166884	<6.0	6.0	2168988	<6.0	6.0	2166888
Lead (Pb)	ug/L	<1.0	1.0	2166884	<1.0	1.0	2168988	<1.0	1.0	2166888
Selenium (Se)	ug/L	<1.0	1.0	2166884	<1.0	1.0	2168988	<1.0	1.0	2166888
Uranium (U)	ug/L	<0.60	0.60	2166884	<0.60	0.60	2168988	<0.60	0.60	2166888
Zinc (Zn)	ug/L	<5.0	5.0	2166884	<5.0	5.0	2168988	<5.0	5.0	2166888

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

TATA STEEL MINERALS CANADA
Site Location: GOODWOOD ARD

Your P.O. #: 3000000730 Sampler Initials: EF

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					IV8523		
Sampling Date					2021/02/01		
	Units	Α	В	С	TSMC-75262	RDL	QC Batch
% MOISTURE	%	-	-	-	4.0	N/A	N/A
CONVENTIONALS							
Fluoride (F)	mg/kg	200	400	2000	<1.0	1.0	2167036
Nitrates (N-NO3-) †	mg/kg	-	-		<1.0	1.0	2167033
Nitrites (N-NO2-) †	mg/kg	-	-		<0.20	0.20	2167033
Nitrate (N) and Nitrite(N)	mg/kg	-	-		<1.0	1.0	2167033

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

TATA STEEL MINERALS CANADA
Site Location: GOODWOOD ARD

Your P.O. #: 3000000730 Sampler Initials: EF

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		IV8523		IV8524		IV8525				
Sampling Date		2021/02/01		2021/02/01		2021/02/01				
	Units	TSMC-75262	QC Batch	TSMC-75262 (CTEU-9)	QC Batch	TSMC-75262 (SPLP1312)	RDL	QC Batch		
% MOISTURE	%	4.0	N/A	N/A	N/A	N/A	N/A	N/A		
CONVENTIONALS	CONVENTIONALS									
Fluoride (F)	mg/L	<1.0	2167455	<1.0	2168998	<1.0	1.0	2167465		
Nitrites (N-NO2-)	mg/L	<0.20	2167273	<0.20	2169001	<0.20	0.20	2167285		
Nitrate (N) and Nitrite(N)	mg/L	<0.20	2167273	<0.20	2169001	<0.20	0.20	2167285		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000730 Sampler Initials: EF

TCLP-EPA 1311 (SOIL)

Lab BV ID		IV8523						
Sampling Date		2021/02/01						
	Units	TSMC-75262	QC Batch					
% MOISTURE	%	4.0	N/A					
Leachates								
Weight of sample (g)	n/a	20.0	2166459					
pH of pre-test	n/a	<1.68	2166459					
pH end of leaching	n/a	4.93	2166459					
Volume extracting fluid 1 (ml)	n/a	400	2166459					
QC Batch = Quality Control Batch N/A = Not Applicable								

Your P.O. #: 3000000730 Sampler Initials: EF

SPLP-EPA 1312 (SOIL)

Lab BV ID		IV8525					
Sampling Date		2021/02/01					
	Units	TSMC-75262 (SPLP1312)	QC Batch				
Leachates							
Weight of sample (g)	n/a	25.1	2166625				
Volume of extracting fluid (mL)	n/a	500	2166625				
pH after 18 hours leaching	n/a	6.43	2166625				
pH of extracting fluid	n/a	4.18	2166625				
QC Batch = Quality Control Batch	1						

Your P.O. #: 3000000730 Sampler Initials: EF

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		IV8524	
Sampling Date		2021/02/01	
	Units	TSMC-75262 (CTEU-9)	QC Batch
Leachates			
Weight of sample (g)	n/a	40.0	2167383
pH Deionized water	n/a	5.37	2167383
Date extraction fluid added	n/a	2021/02/26	2167383
Date leaching terminated	n/a	2021/03/05	2167383
Volume of extracting fluid (mL)	n/a	160	2167383
pH after 7 days of leaching	n/a	8.75	2167383
QC Batch = Quality Control Batch	1		·

Your P.O. #: 3000000730 Sampler Initials: EF

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, 2019." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Les limites de détections indiquées sont multipliées par les facteurs de dilution utilisés pour l'analyse des échantillons.

TCLP-EPA 1311 (SOIL)

pH du pré-test: Veuillez noter que le résultat de l'échantillon est en dehors de la courbe de calibration (pH 4 - 10), et certains d'entre eux aussi dehors des limites de la linéarité (pH 1.68 - 13.0). IV8523

Results relate only to the items tested.

Report Date: 2021/04/12

TATA STEEL MINERALS CANADA Site Location: GOODWOOD ARD

Your P.O. #: 3000000730 Sampler Initials: EF

QUALITY ASSURANCE REPORT

			QUALITY ASSURANCE	REPORT			
QA/QC			_			_	
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2166459	SMD	Method Blank	pH end of leaching	2021/02/24	4.93/2.84		n/a
			Volume extracting fluid 1 (ml)	2021/02/24	400		n/a
2166625	SMD	Method Blank	Volume of extracting fluid (mL)	2021/02/24	500		n/a
			pH after 18 hours leaching	2021/02/24	4.23		n/a
			pH of extracting fluid	2021/02/24	4.18		n/a
2166711	KK	Spiked Blank	Silver (Ag)	2021/02/24		86	%
			Arsenic (As)	2021/02/24		94	%
			Barium (Ba)	2021/02/24		92	%
			Boron (B)	2021/02/24		103	%
			Cadmium (Cd)	2021/02/24		91	%
			Chromium (Cr)	2021/02/24		91	%
			Copper (Cu)	2021/02/24		91	%
			Cobalt (Co)	2021/02/24		91	%
			Tin (Sn)	2021/02/24		96	%
			Iron (Fe)	2021/02/24		92	%
			Manganese (Mn)	2021/02/24		91	%
			Molybdenum (Mo)	2021/02/24		90	%
			Nickel (Ni)	2021/02/24		91	%
			Mercury (Hg)	2021/02/24		95	%
			Lead (Pb)	2021/02/24		93	%
1			Selenium (Se)	2021/02/24		88	%
			Uranium (U)	2021/02/24		95	%
1			Zinc (Zn)	2021/02/24		89	%
2166711	KK	Method Blank	Silver (Ag)	2021/02/24	<0.50		mg/kg
1			Arsenic (As)	2021/02/24	<2.0		mg/kg
			Barium (Ba)	2021/02/24	<4.0		mg/kg
1			Boron (B)	2021/02/24	<2.0		mg/kg
			Cadmium (Cd)	2021/02/24	<0.10		mg/kg
			Chromium (Cr)	2021/02/24	<1.0		mg/kg
			Copper (Cu)	2021/02/24	<1.0		mg/kg
1			Cobalt (Co)	2021/02/24	<1.0		mg/kg
			Tin (Sn)	2021/02/24	<1.0		mg/kg
			Iron (Fe)	2021/02/24	<10		mg/kg
			Manganese (Mn)	2021/02/24	<2.0		mg/kg
			Molybdenum (Mo)	2021/02/24	<0.50		mg/kg
			Nickel (Ni)	2021/02/24	<0.50		mg/kg
			Mercury (Hg)	2021/02/24	<0.010		mg/kg
			Lead (Pb)	2021/02/24	<1.0		mg/kg
			Selenium (Se)	2021/02/24	<0.50		mg/kg
			Uranium (U)	2021/02/24	<2.0		mg/kg
			Zinc (Zn)	2021/02/24	<5.0		mg/kg
2166884	NET	LEACH. BLANK	Silver (Ag)	2021/02/25	<0.30		ug/L
			Arsenic (As)	2021/02/25	<2.0		ug/L
			Barium (Ba)	2021/02/25	<5.0		ug/L
			Boron (B)	2021/02/25	<50		ug/L
			Cadmium (Cd)	2021/02/25	<1.0		ug/L
			Chromium (Cr)	2021/02/25	<7.0		ug/L
			Cobalt (Co)	2021/02/25	<10		ug/L
			Copper (Cu)	2021/02/25	<20		ug/L
			Tin (Sn)	2021/02/25	<50		ug/L
			Iron (Fe)	2021/02/25	<100		ug/L
				2021,02,23	00		~6/ -

Report Date: 2021/04/12

TATA STEEL MINERALS CANADA
Site Location: GOODWOOD ARD

Your P.O. #: 3000000730 Sampler Initials: EF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				<u> </u>			
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Manganese (Mn)	2021/02/25	<3.0		ug/L
			Mercury (Hg)	2021/02/25	<0.50		ug/L
			Molybdenum (Mo)	2021/02/25	<10		ug/L
			Nickel (Ni)	2021/02/25	<6.0		ug/L
			Lead (Pb)	2021/02/25	<1.0		ug/L
			Selenium (Se)	2021/02/25	<1.0		ug/L
			Uranium (U)	2021/02/25	< 0.60		ug/L
			Zinc (Zn)	2021/02/25	<5.0		ug/L
2166884	NET	Spiked Blank	Silver (Ag)	2021/02/25		88	%
			Arsenic (As)	2021/02/25		93	%
			Barium (Ba)	2021/02/25		87	%
			Boron (B)	2021/02/25		101	%
			Cadmium (Cd)	2021/02/25		93	%
			Chromium (Cr)	2021/02/25		86	%
			Cobalt (Co)	2021/02/25		85	%
			Copper (Cu)	2021/02/25		84	%
			Tin (Sn)	2021/02/25		97	%
			Iron (Fe)	2021/02/25		91	%
			Manganese (Mn)	2021/02/25		89	%
			Mercury (Hg)	2021/02/25		89	%
			Molybdenum (Mo)	2021/02/25		91	%
			Nickel (Ni)	2021/02/25		85	%
			Lead (Pb)	2021/02/25		84	%
			Selenium (Se)	2021/02/25		92	%
			Uranium (U)	2021/02/25		85	%
			Zinc (Zn)	2021/02/25		83 87	%
2166888	NET	LEACH. BLANK	Silver (Ag)	2021/02/25	<0.30	67	ug/L
2100000	INLI	LEACH. BLAINK		2021/02/25	<2.0		
			Arsenic (As)	2021/02/25	<5.0		ug/L
			Barium (Ba)				ug/L
			Boron (B)	2021/02/25	<50		ug/L
			Cadmium (Cd)	2021/02/25	<1.0		ug/L
			Chromium (Cr)	2021/02/25	<7.0		ug/L
			Cobalt (Co)	2021/02/25	<10		ug/L
			Copper (Cu)	2021/02/25	<10		ug/L
			Tin (Sn)	2021/02/25	<50		ug/L
			Iron (Fe)	2021/02/25	<100		ug/L
			Manganese (Mn)	2021/02/25	<3.0		ug/L
			Mercury (Hg)	2021/02/25	<0.50		ug/L
			Molybdenum (Mo)	2021/02/25	<10		ug/L
			Nickel (Ni)	2021/02/25	<6.0		ug/L
			Lead (Pb)	2021/02/25	<1.0		ug/L
			Selenium (Se)	2021/02/25	<1.0		ug/L
			Uranium (U)	2021/02/25	<0.60		ug/L
			Zinc (Zn)	2021/02/25	5.1, RDL=5.0		ug/L
2166888	NET	Spiked Blank	Silver (Ag)	2021/02/25		88	%
			Arsenic (As)	2021/02/25		94	%
			Barium (Ba)	2021/02/25		87	%
			Boron (B)	2021/02/25		101	%
			Cadmium (Cd)	2021/02/25		91	%
			Chromium (Cr)	2021/02/25		86	%

Report Date: 2021/04/12

TATA STEEL MINERALS CANADA
Site Location: GOODWOOD ARD

Your P.O. #: 3000000730 Sampler Initials: EF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Cobalt (Co)	2021/02/25		87	%
			Copper (Cu)	2021/02/25		84	%
			Tin (Sn)	2021/02/25		96	%
			Iron (Fe)	2021/02/25		91	%
			Manganese (Mn)	2021/02/25		89	%
			Mercury (Hg)	2021/02/25		91	%
			Molybdenum (Mo)	2021/02/25		92	%
			Nickel (Ni)	2021/02/25		87	%
			Lead (Pb)	2021/02/25		85	%
			Selenium (Se)	2021/02/25		92	%
			Uranium (U)	2021/02/25		84	%
			Zinc (Zn)	2021/02/25		87	%
2167033	TGU	Spiked Blank	Nitrates (N-NO3-)	2021/02/25		109	%
210,033	100	Spiked Blank	Nitrites (N-NO2-)	2021/02/25		103	%
			Nitrate (N) and Nitrite(N)	2021/02/25		106	%
2167033	TGU	Method Blank	Nitrates (N-NO3-)	2021/02/25	<1.0	100	mg/kg
210/033	100	Wethou Blank	Nitrites (N-NO2-)	2021/02/25	<0.20		mg/kg
			Nitrate (N) and Nitrite(N)	2021/02/25	<1.0		
2467026	CDD	Cathard Dlamb		• •	<1.0	116	mg/kg
2167036	SBD	Spiked Blank	Fluoride (F)	2021/02/25	4.0	116	%
2167036	SBD	Method Blank	Fluoride (F)	2021/02/25	<1.0		mg/kg
2167273	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/02/26	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/02/26	<0.20		mg/L
2167273	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/02/26		106	%
			Nitrate (N) and Nitrite(N)	2021/02/26		105	%
2167285	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/02/26	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/02/26	<0.20		mg/L
2167285	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/02/26		106	%
			Nitrate (N) and Nitrite(N)	2021/02/26		107	%
2167383	SMD	Method Blank	pH Deionized water	2021/03/05	5.37		n/a
			Date extraction fluid added	2021/03/05	2021/02/26		n/a
			Date leaching terminated	2021/03/05	2021/03/05		n/a
			Volume of extracting fluid (mL)	2021/03/05	160		n/a
			pH after 7 days of leaching	2021/03/05	7.49		n/a
2167455	ANB	LEACH. BLANK	Fluoride (F)	2021/02/26	<1.0		mg/L
2167455	ANB	Spiked Blank	Fluoride (F)	2021/02/26		103	%
2167465	ANB	LEACH. BLANK	Fluoride (F)	2021/02/26	<1.0		mg/L
2167465	ANB	Spiked Blank	Fluoride (F)	2021/02/26		103	%
2168988	JGZ	LEACH. BLANK	Silver (Ag)	2021/03/08	< 0.30		ug/L
			Arsenic (As)	2021/03/08	<2.0		ug/L
			Barium (Ba)	2021/03/08	<5.0		ug/L
			Boron (B)	2021/03/08	<50		ug/L
			Cadmium (Cd)	2021/03/08	<1.0		ug/L
			Chromium (Cr)	2021/03/08	<7.0		ug/L
			Cobalt (Co)	2021/03/08	<10		ug/L
			Copper (Cu)	2021/03/08	<10		ug/L ug/L
			Tin (Sn)	2021/03/08	<50		ug/L ug/L
			Iron (Fe)	2021/03/08	<100		ug/L ug/L
				2021/03/08	<3.0		
			Manganese (Mn)				ug/L
			Mercury (Hg)	2021/03/08	<0.50		ug/L
			Molybdenum (Mo)	2021/03/08	<10		ug/L
			Nickel (Ni)	2021/03/08	<6.0		ug/L

Your P.O. #: 3000000730 Sampler Initials: EF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Lead (Pb)	2021/03/08	<1.0		ug/L
			Selenium (Se)	2021/03/08	<1.0		ug/L
			Uranium (U)	2021/03/08	<0.60		ug/L
			Zinc (Zn)	2021/03/08	<5.0		ug/L
2168988	JGZ	Spiked Blank	Silver (Ag)	2021/03/08		91	%
			Arsenic (As)	2021/03/08		95	%
			Barium (Ba)	2021/03/08		97	%
			Boron (B)	2021/03/08		91	%
			Cadmium (Cd)	2021/03/08		95	%
			Chromium (Cr)	2021/03/08		90	%
			Cobalt (Co)	2021/03/08		89	%
			Copper (Cu)	2021/03/08		87	%
			Tin (Sn)	2021/03/08		98	%
			Iron (Fe)	2021/03/08		95	%
			Manganese (Mn)	2021/03/08		94	%
			Mercury (Hg)	2021/03/08		96	%
			Molybdenum (Mo)	2021/03/08		93	%
			Nickel (Ni)	2021/03/08		90	%
			Lead (Pb)	2021/03/08		92	%
			Selenium (Se)	2021/03/08		91	%
			Uranium (U)	2021/03/08		94	%
			Zinc (Zn)	2021/03/08		90	%
2168998	VPA	LEACH. BLANK	Fluoride (F)	2021/03/05	<1.0		mg/L
2168998	VPA	Spiked Blank	Fluoride (F)	2021/03/05		110	%
2169001	ABT	LEACH. BLANK	Nitrites (N-NO2-)	2021/03/06	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/03/06	<0.20		mg/L
2169001	ABT	Spiked Blank	Nitrites (N-NO2-)	2021/03/06		101	%
			Nitrate (N) and Nitrite(N)	2021/03/06		102	%

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Your P.O. #: 3000000730 Sampler Initials: EF

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Mingan Assayag

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

Michelina Cinquino, Analyst II

Shu Yang 2008-014

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000730

Your Project #: GOODWOOD ARD Site Location: GOODWOOD Your C.O.C. #: 789989-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/06/01

Report #: R2661102 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C113725 Received: 2021/04/06, 10:30

Sample Matrix: Soil # Samples Received: 9

ii samples received. 5		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	3	2021/06/01	N/A		
Grinding	3	N/A	2021/04/07	STL SOP-00019	N/A
Fluoride (free)	3	2021/05/01	2021/05/01	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	6	N/A	2021/04/08	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	3	N/A	2021/05/05	STL SOP-00038	SM 23 4500-F m
Mercury by ICP-MS	3	2021/04/06	2021/04/08	III-105 rév.10 03/09/25	MA.200-Mét. 1.2 R7
Water Leachate (CTEU - 9)	3	2021/04/28	2021/05/05	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	3	2021/04/07	2021/04/08	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	3	2021/04/30	2021/04/30	STL SOP-00069	MA.200-Mét. 1.2 R7
Metals - Leached	6	2021/04/08	2021/04/09	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	3	2021/05/05	2021/05/06	STL SOP-00062	MA.200-Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	6	N/A	2021/04/08	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	3	N/A	2021/05/06	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	3	2021/05/01	2021/05/01	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	3	2021/04/07	2021/04/08	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your P.O. #: 3000000730

Your Project #: GOODWOOD ARD Site Location: GOODWOOD Your C.O.C. #: 789989-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/06/01

Report #: R2661102 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C113725

Received: 2021/04/06, 10:30

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas - Burnaby

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Ma P1 M2 02

Martine Lepage Project Manager and Account Manager 02 Jun 2021 11:52:38

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000730

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					IY8892		IY8893		IY8894			
Committee Date					2021/03/17		2021/03/26		2021/03/28			
Sampling Date					17:05		17:45		16:55			
COC Number					789989-01-01		789989-01-01		789989-01-01			
	Units	Α	В	С	TSMC-81334	RDL	TSMC-81462	RDL	TSMC-81470	RDL	QC Batch	
% MOISTURE	%	-	-	-	12	N/A	18	N/A	13	N/A	N/A	
METALS	METALS											
Silver (Ag)	mg/kg	2	20	40	<0.50	0.50	<0.50	0.50	<0.50	0.50	2181808	
Arsenic (As)	mg/kg	6	30	50	6.2	2.0	2.5	2.0	3.6	2.0	2181808	
Barium (Ba)	mg/kg	340	500	2000	<4.0	4.0	<4.0	4.0	<4.0	4.0	2181808	
Boron (B)	mg/kg		1		3.8	2.0	2.7	2.0	<2.0	2.0	2181808	
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	0.10	<0.10	0.10	<0.10	0.10	2181808	
Chromium (Cr)	mg/kg	100	250	800	4.6	1.0	<1.0	1.0	<1.0	1.0	2181808	
Copper (Cu)	mg/kg	50	100	500	1.9	1.0	<1.0	1.0	<1.0	1.0	2181808	
Cobalt (Co)	mg/kg	25	50	300	7.7	1.0	1.2	1.0	<1.0	1.0	2181808	
Tin (Sn)	mg/kg	5	50	300	<1.0	1.0	<1.0	1.0	<1.0	1.0	2181808	
Iron (Fe) †	mg/kg	•	ı		75000	10	120000	100	74000	10	2181808	
Manganese (Mn)	mg/kg	1000	1000	2200	500	2.0	290	2.0	170	2.0	2181808	
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	0.50	<0.50	0.50	<0.50	0.50	2181808	
Nickel (Ni)	mg/kg	50	100	500	2.5	0.50	<0.50	0.50	<0.50	0.50	2181808	
Mercury (Hg)	mg/kg	0.2	2	10	<0.010	0.010	<0.010	0.010	<0.010	0.010	2181808	
Lead (Pb)	mg/kg	50	500	1000	1.7	1.0	<1.0	1.0	1.4	1.0	2181808	
Selenium (Se)	mg/kg	1	3	10	<0.50	0.50	<0.50	0.50	<0.50	0.50	2181808	
Uranium (U) †	mg/kg	-	-		<2.0	2.0	<2.0	2.0	<2.0	2.0	2181808	
Zinc (Zn)	mg/kg	140	500	1500	<5.0	5.0	7.2	5.0	<5.0	5.0	2181808	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000730

METALS-LAB LEACHATE (SOIL)

Lab BV ID		IY8892	IY8893	IY8894		IY8897						
Sampling Date		2021/03/17	2021/03/26	2021/03/28		2021/03/17						
		17:05	17:45	16:55		17:05						
COC Number		789989-01-01	789989-01-01	789989-01-01		789989-01-01						
	Units	TSMC-81334	TSMC-81462	TSMC-81470	QC Batch	TSMC-81334-CTEU-9	RDL	QC Batch				
% MOISTURE	%	12	18	13	N/A	N/A	N/A	N/A				
METALS	METALS											
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	2175952	<0.30	0.30	2182991				
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	2175952	<2.0	2.0	2182991				
Barium (Ba)	ug/L	<5.0	27	18	2175952	<5.0	5.0	2182991				
Boron (B)	ug/L	<50	<50	<50	2175952	<50	50	2182991				
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	2175952	<1.0	1.0	2182991				
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	2175952	<7.0	7.0	2182991				
Cobalt (Co)	ug/L	<10	<10	<10	2175952	<10	10	2182991				
Copper (Cu)	ug/L	<3.0	<3.0	<3.0	2175952	<3.0	3.0	2182991				
Tin (Sn) †	ug/L	<50	<50	<50	2175952	<50	50	2182991				
Iron (Fe)	ug/L	<100	2300	550	2175952	<100	100	2182991				
Manganese (Mn)	ug/L	82	87	190	2175952	<3.0	3.0	2182991				
Mercury (Hg)	ug/L	<0.50	<0.50	<0.50	2175952	<0.50	0.50	2182991				
Molybdenum (Mo)	ug/L	<10	<10	<10	2175952	<10	10	2182991				
Nickel (Ni)	ug/L	<6.0	<6.0	<6.0	2175952	<6.0	6.0	2182991				
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	2175952	<1.0	1.0	2182991				
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	2175952	<1.0	1.0	2182991				
Uranium (U)	ug/L	<0.60	<0.60	<0.60	2175952	<0.60	0.60	2182991				
Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	2175952	<5.0	5.0	2182991				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000730

METALS-LAB LEACHATE (SOIL)

Lab BV ID		IY8897	IY8898	IY8899		
		2021/03/17	2021/03/26	2021/03/28		
Sampling Date		17:05	17:45	16:55		
COC Number		789989-01-01	789989-01-01	789989-01-01		
	Units	TSMC-81334-CTEU-9 Lab-Dup	TSMC-81462-CTEU-9	TSMC-81470-CTEU-9	RDL	QC Batch
METALS						
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	0.30	2182991
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	2.0	2182991
Barium (Ba)	ug/L	<5.0	7.5	<5.0	5.0	2182991
Boron (B)	ug/L	<50	<50	<50	50	2182991
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	1.0	2182991
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	7.0	2182991
Cobalt (Co)	ug/L	<10	<10	<10	10	2182991
Copper (Cu)	ug/L	<3.0	<3.0	<3.0	3.0	2182991
Tin (Sn) †	ug/L	<50	<50	<50	50	2182991
Iron (Fe)	ug/L	<100	280	180	100	2182991
Manganese (Mn)	ug/L	<3.0	<3.0	4.6	3.0	2182991
Mercury (Hg)	ug/L	<0.50	<0.50	<0.50	0.50	2182991
Molybdenum (Mo)	ug/L	<10	<10	<10	10	2182991
Nickel (Ni)	ug/L	<6.0	<6.0	<6.0	6.0	2182991
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	1.0	2182991
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	1.0	2182991
Uranium (U)	ug/L	<0.60	<0.60	<0.60	0.60	2182991
Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	5.0	2182991
PDI - Papartable Detecti	on Limit					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Your P.O. #: 3000000730

METALS-LAB LEACHATE (SOIL)

Lab BV ID		IY8902	IY8903	IY8904								
Sampling Date		2021/03/17	2021/03/26	2021/03/28								
Sampling Date		17:05	17:45	16:55								
COC Number		789989-01-01	789989-01-01	789989-01-01								
	Units	TSMC-81334- (SPLP1312)	TSMC-81462- (SPLP1312)	TSMC-81470- (SPLP1312)	RDL	QC Batch						
METALS	METALS											
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	0.30	2175947						
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	2.0	2175947						
Boron (B)	ug/L	<50	<50	<50	50	2175947						
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	1.0	2175947						
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	7.0	2175947						
Cobalt (Co)	ug/L	<10	<10	<10	10	2175947						
Copper (Cu)	ug/L	<3.0	<3.0	<3.0	3.0	2175947						
Tin (Sn) †	ug/L	<50	<50	<50	50	2175947						
Iron (Fe)	ug/L	<100	<100	<100	100	2175947						
Manganese (Mn)	ug/L	58	<3.0	110	3.0	2175947						
Mercury (Hg)	ug/L	<0.50	<0.50	<0.50	0.50	2175947						
Molybdenum (Mo)	ug/L	<10	<10	<10	10	2175947						
Nickel (Ni)	ug/L	<6.0	<6.0	<6.0	6.0	2175947						
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	1.0	2175947						
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	1.0	2175947						
Uranium (U)	ug/L	<0.60	<0.60	<0.60	0.60	2175947						
Zinc (Zn)	ug/L	<5.0	<5.0	9.2	5.0	2175947						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Your P.O. #: 3000000730

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					IY8892	IY8893	IY8894		
Sampling Date					2021/03/17 17:05	2021/03/26 17:45	2021/03/28 16:55		
COC Number					789989-01-01	789989-01-01	789989-01-01		
	Units	Α	В	С	TSMC-81334	TSMC-81462	TSMC-81470	RDL	QC Batch
% MOISTURE	%	-	-	-	12	18	13	N/A	N/A
CONVENTIONALS									
Fluoride (F)	mg/kg	200	400	2000	<1.0	<1.0	<1.0	1.0	2182030
Nitrates (N-NO3-) †	mg/kg	-	-		1.5	<1.0	<1.0	1.0	2182029
Nitrites (N-NO2-) † mg/kg		<0.20	<0.20	<0.20	0.20	2182029			
Nitrate (N) and Nitrite(N)	mg/kg	-	-		1.5	<1.0	<1.0	1.0	2182029

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000730

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		IY8892	IY8893	IY8894		IY8897		
Sampling Date		2021/03/17	2021/03/26	2021/03/28		2021/03/17		
Jamping Jaco		17:05	17:45	16:55		17:05		
COC Number		789989-01-01	789989-01-01	789989-01-01		789989-01-01		
	Units	TSMC-81334	TSMC-81462	TSMC-81470	QC Batch	TSMC-81334-CTEU-9	RDL	QC Batch
% MOISTURE	%	12	18	13	N/A	N/A	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	<1.0	<1.0	2176039	<1.0	1.0	2182954
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	<0.20	2176041	<0.20	0.20	2182958
Nitrates (N-NO3-)	mg/L	<0.20	<0.20	<0.20	2176041	0.37	0.20	2182958
Nitrate (N) and Nitrite(N)	mg/L	<0.20	<0.20	<0.20	2176041	0.37	0.20	2182958
RDI - Reportable Detection I	imit							

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		IY8898	IY8899		IY8902		
Sampling Date		2021/03/26 17:45	2021/03/28 16:55		2021/03/17 17:05		
COC Number		789989-01-01	789989-01-01		789989-01-01		
	Units	TSMC-81462-CTEU-9	TSMC-81470-CTEU-9	QC Batch	TSMC-81334- (SPLP1312)	RDL	QC Batch
CONVENTIONALS							
Fluoride (F)	mg/L	<1.0	2.0	2182954	<1.0	1.0	2176034
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	2182958	<0.20	0.20	2176044
Nitrates (N-NO3-)	mg/L	<0.20	<0.20	2182958	N/A	0.20	N/A
Nitrate (N) and Nitrite(N)	mg/L	<0.20	<0.20	2182958	N/A	0.20	N/A
PDI - Papartable Detection	Linnit						

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		IY8903	IY8904						
Sampling Date		2021/03/26 17:45	2021/03/28 16:55						
COC Number		789989-01-01	789989-01-01						
	Units	TSMC-81462- (SPLP1312)	TSMC-81470- (SPLP1312)	RDL	QC Batch				
CONVENTIONALS	CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	<1.0	1.0	2176034				
pridoriae (r)	IIIg/L	\1.0	\1.0	1.0	21/0054				
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	0.20	2176044				

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD ARD

Site Location: GOODWOOD Your P.O. #: 3000000730

TCLP-EPA 1311 (SOIL)

Lab BV ID		IY8892	IY8893	IY8894	IY8894	
Sampling Date		2021/03/17 17:05	2021/03/26 17:45	2021/03/28 16:55	2021/03/28 16:55	
COC Number		789989-01-01	789989-01-01	789989-01-01	789989-01-01	
	Units	TSMC-81334	TSMC-81462	TSMC-81470	TSMC-81470 Lab-Dup	QC Batch
% MOISTURE	%	12	18	13	13	N/A
Leachates	•					
Weight of sample (g)	n/a	20.1	20.0	20.2	20.2	2175413
pH of pre-test	n/a	<1.68	<1.68	<1.68	<1.68	2175413
pH end of leaching	n/a	4.93	4.95	4.94	5.07	2175413
Volume extracting fluid 1 (ml)	n/a	400	400	400	400	2175413

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000730

SPLP-EPA 1312 (SOIL)

Lab BV ID		IY8902	IY8903	IY8904							
Sampling Date		2021/03/17 17:05	2021/03/26 17:45	2021/03/28 16:55							
COC Number		789989-01-01	789989-01-01	789989-01-01							
	Units	TSMC-81334- (SPLP1312)	TSMC-81462- (SPLP1312)	TSMC-81470- (SPLP1312)	QC Batch						
Leachates											
Weight of sample (g)	n/a	25.1	25.0	25.1	2175595						
Volume of extracting fluid (mL)	n/a	500	500	500	2175595						
pH after 18 hours leaching	n/a	5.10	6.50	5.49	2175595						
pH of extracting fluid	n/a	4.16	4.16	4.16	2175595						
QC Batch = Quality Control Batch	 1										

Your P.O. #: 3000000730

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		IY8897	IY8898	IY8899					
Sampling Date		2021/03/17	2021/03/26	2021/03/28					
Jamping Date		17:05	17:45	16:55					
COC Number		789989-01-01	789989-01-01	789989-01-01					
	Units	TSMC-81334-CTEU-9	TSMC-81462-CTEU-9	TSMC-81470-CTEU-9	QC Batch				
Leachates									
Weight of sample (g)	n/a	40.1	40.1	40.0	2180972				
pH Deionized water	n/a	5.45	5.45	5.45	2180972				
Date extraction fluid added	n/a	2021/04/28	2021/04/28	2021/04/28	2180972				
Date leaching terminated	n/a	2021/05/05	2021/05/05	2021/05/05	2180972				
Volume of extracting fluid (mL)	n/a	160	160	160	2180972				
pH after 7 days of leaching	n/a	8.15	7.76	9.00	2180972				
QC Batch = Quality Control Batch	1								

Your P.O. #: 3000000730

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

TOTAL EXTRACTABLE METALS (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Results relate only to the items tested.

Report Date: 2021/06/01

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD ARD

Site Location: GOODWOOD Your P.O. #: 3000000730

QUALITY ASSURANCE REPORT

Recovery	Units n/a n/a n/a n/a n/a ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	n/a n/a n/a n/a ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	n/a n/a n/a ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	n/a n/a n/a ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	n/a n/a ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	n/a ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	ug/L ug/L ug/L ug/L ug/L ug/L
	ug/L ug/L ug/L ug/L ug/L ug/L
	ug/L ug/L ug/L ug/L ug/L ug/L
	ug/L ug/L ug/L ug/L ug/L
	ug/L ug/L ug/L ug/L
	ug/L ug/L ug/L
	ug/L ug/L
	ug/L
	ua/I
	ug/L
96	%
101	%
102	%
102	%
95	%
	%
	%
	%
	%
100	%
	%
	%
	%
	%
	%
	%
	%
	ug/L
	~6/ L
	ug/L
	ug/L
	102 102 95 95 93 111 100

Report Date: 2021/06/01

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD ARD

Site Location: GOODWOOD Your P.O. #: 3000000730

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Manganese (Mn)	2021/04/09	<3.0		ug/L
			Mercury (Hg)	2021/04/09	<0.50		ug/L
			Molybdenum (Mo)	2021/04/09	<10		ug/L
			Nickel (Ni)	2021/04/09	<6.0		ug/L
			Lead (Pb)	2021/04/09	<1.0		ug/L
			Selenium (Se)	2021/04/09	<1.0		ug/L
			Uranium (U)	2021/04/09	<0.60		ug/L
			Zinc (Zn)	2021/04/09	<5.0		ug/L
2175952	NET	Spiked Blank	Silver (Ag)	2021/04/09		98	%
			Arsenic (As)	2021/04/09		104	%
			Barium (Ba)	2021/04/09		99	%
			Boron (B)	2021/04/09		104	%
			Cadmium (Cd)	2021/04/09		100	%
			Chromium (Cr)	2021/04/09		99	%
			Cobalt (Co)	2021/04/09		98	%
			Copper (Cu)	2021/04/09		97	%
			Tin (Sn)	2021/04/09		111	%
			Iron (Fe)	2021/04/09		103	%
			Manganese (Mn)	2021/04/09		103	%
			Mercury (Hg)	2021/04/09		97	%
			Molybdenum (Mo)	2021/04/09		102	%
			Nickel (Ni)	2021/04/09		98	%
			Lead (Pb)	2021/04/09		99	%
			Selenium (Se)	2021/04/09		102	%
			Uranium (U)	2021/04/09		103	%
			Zinc (Zn)	2021/04/09		98	%
2176034	AJ1	LEACH. BLANK	Fluoride (F)	2021/04/08	<1.0	30	mg/L
2176034	AJ1	Spiked Blank	Fluoride (F)	2021/04/08	11.0	103	%
2176034	AJ1	LEACH. BLANK	Fluoride (F)	2021/04/08	<1.0	105	mg/L
2176039	AJ1	Spiked Blank	Fluoride (F)	2021/04/08	11.0	103	// // // // // // // // // // // // //
2176033	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/04/08	<0.20	103	
21/0041	100	LEACH. BLANK	Nitrates (N-NO3-)	2021/04/08	<0.20		mg/L mg/L
			Nitrates (N-NO3-) Nitrate (N) and Nitrite(N)	2021/04/08	<0.20		
2176041	TCH	Cuilead Dlank			<0.20	97	mg/L
21/6041	TGU	Spiked Blank	Nitrites (N-NO2-) Nitrates (N-NO3-)	2021/04/08 2021/04/08		94	% %
			,	2021/04/08		9 4 95	% %
2176044	TCU	LEACH DIANK	Nitrate (N) and Nitrite(N)		40.20	95	
2176044	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/04/08	<0.20	OF	mg/L
2176044	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/04/08	F 4F	95	%
2180972	SIMD	Method Blank	pH Deionized water	2021/05/05	5.45		n/a
			Date extraction fluid added	2021/05/05	2021/04/28		n/a
			Date leaching terminated	2021/05/05	2021/05/05		n/a
			Volume of extracting fluid (mL)	2021/05/05	160		n/a
			pH after 7 days of leaching	2021/05/05	7.14		n/a
2181808	NET	Spiked Blank	Silver (Ag)	2021/04/30		83	%
			Arsenic (As)	2021/04/30		92	%
			Barium (Ba)	2021/04/30		95	%
			Boron (B)	2021/04/30		108	%
			Cadmium (Cd)	2021/04/30		91	%
			Chromium (Cr)	2021/04/30		90	%
			Copper (Cu)	2021/04/30		91	%
			Cobalt (Co)	2021/04/30		85	%

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD ARD

Site Location: GOODWOOD Your P.O. #: 3000000730

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Tin (Sn)	2021/04/30		91	%
			Iron (Fe)	2021/04/30		95	%
			Manganese (Mn)	2021/04/30		91	%
			Molybdenum (Mo)	2021/04/30		90	%
			Nickel (Ni)	2021/04/30		93	%
			Mercury (Hg)	2021/04/30		101	%
			Lead (Pb)	2021/04/30		95	%
			Selenium (Se)	2021/04/30		97	%
			Uranium (U)	2021/04/30		96	%
			Zinc (Zn)	2021/04/30		92	%
2181808	NET	Method Blank	Silver (Ag)	2021/04/30	<0.50		mg/kg
			Arsenic (As)	2021/04/30	<2.0		mg/kg
			Barium (Ba)	2021/04/30	<4.0		mg/kg
			Boron (B)	2021/04/30	<2.0		mg/kg
			Cadmium (Cd)	2021/04/30	<0.10		mg/kg
			Chromium (Cr)	2021/04/30	<1.0		mg/kg
			Copper (Cu)	2021/04/30	<1.0		mg/kg
			Cobalt (Co)	2021/04/30	<1.0		mg/kg
			Tin (Sn)	2021/04/30	<1.0		mg/kg
			Iron (Fe)	2021/04/30	<10		mg/kg
			Manganese (Mn)	2021/04/30	<2.0		mg/kg
			Molybdenum (Mo)	2021/04/30	<0.50		mg/kg
			Nickel (Ni)	2021/04/30	<0.50		mg/kg
			Mercury (Hg)	2021/04/30	< 0.010		mg/kg
			Lead (Pb)	2021/04/30	<1.0		mg/kg
			Selenium (Se)	2021/04/30	<0.50		mg/kg
			Uranium (U)	2021/04/30	<2.0		mg/kg
			Zinc (Zn)	2021/04/30	<5.0		mg/kg
2182029	VPA	Spiked Blank	Nitrates (N-NO3-)	2021/05/01	13.0	98	%
2102023	•••	opinea biaini	Nitrites (N-NO2-)	2021/05/01		98	%
			Nitrate (N) and Nitrite(N)	2021/05/01		98	%
2182029	VPA	Method Blank	Nitrates (N-NO3-)	2021/05/01	<1.0	30	mg/kg
2102023	V171	Wicthod Blank	Nitrites (N-NO2-)	2021/05/01	<0.20		mg/kg
			Nitrate (N) and Nitrite(N)	2021/05/01	<1.0		mg/kg
2182030	VPA	Spiked Blank	Fluoride (F)	2021/05/01	11.0	98	%
2182030	VPA	Method Blank	Fluoride (F)	2021/05/01	<1.0	30	mg/kg
2182954	SBD	LEACH. BLANK	Fluoride (F)	2021/05/05	<1.0		mg/L
2182954	SBD	Spiked Blank	Fluoride (F)	2021/05/05	1.0	100	/// // %
2182958	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/05/06	<0.20	100	mg/L
2102330	100	ELACH. BEATTA	Nitrates (N-NO3-)	2021/05/06	<0.20		mg/L
			Nitrates (N Nos) Nitrate (N) and Nitrite(N)	2021/05/06	<0.20		mg/L
2182958	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/05/06	10.20	99	/// // %
	100	Spinca Dialik	Nitrates (N-NO3-)	2021/05/06		99	%
			Nitrates (N-NO3-) Nitrate (N) and Nitrite(N)	2021/05/06		99	%
2182991	RB2	LEACH. BLANK	Silver (Ag)	2021/05/06	<0.30	22	ug/L
_102JJI	NDZ	LLACII. DLAINI	Arsenic (As)	2021/05/06	<2.0		ug/L ug/L
			Barium (Ba)	2021/05/06	<5.0		ug/L ug/L
			Boron (B)	2021/05/06	<50		ug/L ug/L
			Cadmium (Cd)	2021/05/06	<1.0		ug/L ug/L
			Chromium (Cr)	2021/05/06	<7.0		ug/L ug/L
			Cobalt (Co)	2021/05/06	<10		
			Copail (Co)	2021/03/00			ug/L

Your P.O. #: 3000000730

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Copper (Cu)	2021/05/06	<3.0		ug/L
			Tin (Sn)	2021/05/06	<50		ug/L
			Iron (Fe)	2021/05/06	<100		ug/L
			Manganese (Mn)	2021/05/06	<3.0		ug/L
			Mercury (Hg)	2021/05/06	<0.50		ug/L
			Molybdenum (Mo)	2021/05/06	<10		ug/L
			Nickel (Ni)	2021/05/06	<6.0		ug/L
			Lead (Pb)	2021/05/06	<1.0		ug/L
			Selenium (Se)	2021/05/06	<1.0		ug/L
			Uranium (U)	2021/05/06	<0.60		ug/L
			Zinc (Zn)	2021/05/06	<5.0		ug/L
2182991	RB2	Spiked Blank	Silver (Ag)	2021/05/06		93	%
			Arsenic (As)	2021/05/06		103	%
			Barium (Ba)	2021/05/06		97	%
			Boron (B)	2021/05/06		103	%
			Cadmium (Cd)	2021/05/06		98	%
			Chromium (Cr)	2021/05/06		99	%
			Cobalt (Co)	2021/05/06		98	%
			Copper (Cu)	2021/05/06		97	%
			Tin (Sn)	2021/05/06		111	%
			Iron (Fe)	2021/05/06		101	%
			Manganese (Mn)	2021/05/06		103	%
			Mercury (Hg)	2021/05/06		101	%
			Molybdenum (Mo)	2021/05/06		102	%
			Nickel (Ni)	2021/05/06		97	%
			Lead (Pb)	2021/05/06		95	%
			Selenium (Se)	2021/05/06		93	%
			Uranium (U)	2021/05/06		99	%
			Zinc (Zn)	2021/05/06		100	%

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Your P.O. #: 3000000730

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Alex Thibert

Membre OCQ #2020 05

Alex Thibert, B.Sc., Chemist, Montréal, Analyst II, Chemist in Training

Frederic Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

Michelina Cinquino, Analyst II

Shu Yang

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997 Your Project #: ARD

Site Location: GOODWOOD Your C.O.C. #: 808542-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/06/07

Report #: R2662731 Version: 1 - Final

CERTIFICATE OF ANALYSIS

<u>LAB BV JOB #: C117583</u> Received: 2021/04/23, 16:30

Sample Matrix: Soil # Samples Received: 9

'		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	3	2021/06/07	N/A		
Grinding	3	N/A	2021/04/28	STL SOP-00019	N/A
Fluoride (free)	3	2021/04/30	2021/04/30	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	3	N/A	2021/04/30	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	3	N/A	2021/05/01	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	3	N/A	2021/05/14	STL SOP-00038	SM 23 4500-F m
Mercury by ICP-MS	3	2021/04/26	2021/04/30	III-105 rév.10 03/09/25	MA.200-Mét. 1.2 R7
Water Leachate (CTEU - 9)	3	2021/05/04	2021/05/11	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	3	2021/04/29	2021/04/30	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	3	2021/04/30	2021/04/30	STL SOP-00069	MA.200-Mét. 1.2 R7
Metals - Leached	6	2021/04/30	2021/04/30	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	3	2021/05/11	2021/05/13	STL SOP-00062	MA.200-Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	3	N/A	2021/05/12	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	3	N/A	2021/05/02	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	3	N/A	2021/05/06	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	3	2021/04/30	2021/05/01	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	3	2021/05/03	2021/05/04	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the

Your P.O. #: 3000000997 Your Project #: ARD

Site Location: GOODWOOD Your C.O.C. #: 808542-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/06/07

Report #: R2662731 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C117583
Received: 2021/04/23, 16:30
customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas - Burnaby

 $Note: All\ parameters\ included\ in\ the\ present\ certificate\ are\ accredited\ by\ the\ MELCC\ unless\ stated\ otherwise.$

Encryption Key

Ma Pr Ma 09

Martine Lepage Project Manager and Account Manager 09 Jun 2021 08:25:52

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					JA6221	JA6222	JA6223		
Sampling Date					2021/02/20	2021/04/04	2021/04/12		
COC Number					808542-01-01	808542-01-01	808542-01-01		
	Units	Α	В	С	TSMC-81181	TSMC-81539	TSMC-81655	RDL	QC Batch
% MOISTURE	%	-	-	-	0.2	3.6	7.4	N/A	N/A
METALS	-								
Silver (Ag)	mg/kg	2	20	40	<0.50	<0.50	<0.50	0.50	2181623
Arsenic (As)	mg/kg	6	30	50	11	3.3	5.2	2.0	2181623
Barium (Ba)	mg/kg	340	500	2000	<4.0	<4.0	<4.0	4.0	2181623
Boron (B)	mg/kg		-		4.7	3.2	2.5	2.0	2181623
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	<0.10	<0.10	0.10	2181623
Chromium (Cr)	mg/kg	100	250	800	1.8	<1.0	1.6	1.0	2181623
Copper (Cu)	mg/kg	50	100	500	7.4	1.4	7.2	1.0	2181623
Cobalt (Co)	mg/kg	25	50	300	5.4	4.3	9.6	1.0	2181623
Tin (Sn)	mg/kg	5	50	300	<1.0	<1.0	<1.0	1.0	2181623
Iron (Fe) †	mg/kg		-		150000	170000	140000	100	2181623
Manganese (Mn)	mg/kg	1000	1000	2200	420	420	290	2.0	2181623
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	<0.50	<0.50	0.50	2181623
Nickel (Ni)	mg/kg	50	100	500	1.5	<0.50	1.2	0.50	2181623
Mercury (Hg)	mg/kg	0.2	2	10	0.10	0.025	0.019	0.010	2181623
Lead (Pb)	mg/kg	50	500	1000	1.3	1.5	3.4	1.0	2181623
Selenium (Se)	mg/kg	1	3	10	<0.50	<0.50	<0.50	0.50	2181623
Uranium (U) †	mg/kg	-	-		<2.0	<2.0	<2.0	2.0	2181623
Zinc (Zn)	mg/kg	140	500	1500	<5.0	<5.0	6.2	5.0	2181623

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

METALS-LAB LEACHATE (SOIL)

						_		
Lab BV ID		JA6221	JA6222	JA6223		JA6334		
Sampling Date		2021/02/20	2021/04/04	2021/04/12		2021/02/20		
COC Number		808542-01-01	808542-01-01	808542-01-01		808542-01-01		
	Units	TSMC-81181	TSMC-81539	TSMC-81655	QC Batch	TSMC-81181-CTEU-9	RDL	QC Batch
% MOISTURE	%	0.2	3.6	7.4	N/A	N/A	N/A	N/A
METALS	•							
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	2181778	<0.30	0.30	2184801
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	2181778	<2.0	2.0	2184801
Barium (Ba)	ug/L	16	<5.0	5.0	2181778	15	5.0	2184801
Boron (B)	ug/L	<50	<50	<50	2181778	<50	50	2184801
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	2181778	<1.0	1.0	2184801
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	2181778	<7.0	7.0	2184801
Cobalt (Co)	ug/L	<10	<10	<10	2181778	<10	10	2184801
Copper (Cu)	ug/L	<3.0	<3.0	<3.0	2181778	<3.0	3.0	2184801
Tin (Sn) †	ug/L	<50	<50	<50	2181778	<50	50	2184801
Iron (Fe)	ug/L	110	160	<100	2181778	<100	100	2184801
Manganese (Mn)	ug/L	320	100	63	2181778	11	3.0	2184801
Mercury (Hg)	ug/L	<0.50	<0.50	<0.50	2181778	<0.50	0.50	2184801
Molybdenum (Mo)	ug/L	<10	<10	<10	2181778	<10	10	2184801
Nickel (Ni)	ug/L	<6.0	<6.0	<6.0	2181778	<6.0	6.0	2184801
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	2181778	<1.0	1.0	2184801
Selenium (Se)	ug/L	2.8	<1.0	<1.0	2181778	<1.0	1.0	2184801
Uranium (U)	ug/L	<0.60	<0.60	<0.60	2181778	<0.60	0.60	2184801
Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	2181778	<5.0	5.0	2184801

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JA6344	JA6346		JA6387		
Sampling Date		2021/04/04	2021/04/12		2021/02/20		
COC Number		808542-01-01	808542-01-01		808542-01-01		
	Units	TSMC-81539-CTEU-9	TSMC-81655-CTEU-9	QC Batch	TSMC-81181-(SPLP1312)	RDL	QC Batch
METALS							
Silver (Ag) †	ug/L	<0.30	<0.30	2184801	<0.30	0.30	2181852
Arsenic (As)	ug/L	<2.0	<2.0	2184801	<2.0	2.0	2181852
Barium (Ba)	ug/L	<5.0	<5.0	2184801	<5.0	5.0	2181852
Boron (B)	ug/L	<50	<50	2184801	<50	50	2181852
Cadmium (Cd)	ug/L	<1.0	<1.0	2184801	<1.0	1.0	2181852
Chromium (Cr)	ug/L	<7.0	<7.0	2184801	<7.0	7.0	2181852
Cobalt (Co)	ug/L	<10	<10	2184801	<10	10	2181852
Copper (Cu)	ug/L	<3.0	<3.0	2184801	<3.0	3.0	2181852
Tin (Sn) †	ug/L	<50	<50	2184801	<50	50	2181852
Iron (Fe)	ug/L	<100	310	2184801	<100	100	2181852
Manganese (Mn)	ug/L	<3.0	<3.0	2184801	130	3.0	2181852
Mercury (Hg)	ug/L	<0.50	<0.50	2184801	<0.50	0.50	2181852
Molybdenum (Mo)	ug/L	<10	<10	2184801	<10	10	2181852
Nickel (Ni)	ug/L	<6.0	<6.0	2184801	<6.0	6.0	2181852
Lead (Pb)	ug/L	<1.0	<1.0	2184801	<1.0	1.0	2181852
Selenium (Se)	ug/L	<1.0	<1.0	2184801	<1.0	1.0	2181852
Uranium (U)	ug/L	<0.60	<0.60	2184801	<0.60	0.60	2181852
Zinc (Zn)	ug/L	<5.0	<5.0	2184801	<5.0	5.0	2181852

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JA6388	JA6389		
Sampling Date		2021/04/04	2021/04/12		
COC Number		808542-01-01	808542-01-01		
	Units	TSMC-81539-(SPLP1312)	TSMC-81655-(SPLP1312)	RDL	QC Batch
METALS					
Silver (Ag) †	ug/L	<0.30	<0.30	0.30	2181852
Arsenic (As)	ug/L	<2.0	<2.0	2.0	2181852
Barium (Ba)	ug/L	<5.0	<5.0	5.0	2181852
Boron (B)	ug/L	<50	<50	50	2181852
Cadmium (Cd)	ug/L	<1.0	<1.0	1.0	2181852
Chromium (Cr)	ug/L	<7.0	<7.0	7.0	2181852
Cobalt (Co)	ug/L	<10	<10	10	2181852
Copper (Cu)	ug/L	<3.0	<3.0	3.0	2181852
Tin (Sn) †	ug/L	<50	<50	50	2181852
Iron (Fe)	ug/L	<100	<100	100	2181852
Manganese (Mn)	ug/L	13	23	3.0	2181852
Mercury (Hg)	ug/L	<0.50	<0.50	0.50	2181852
Molybdenum (Mo)	ug/L	<10	<10	10	2181852
Nickel (Ni)	ug/L	<6.0	<6.0	6.0	2181852
Lead (Pb)	ug/L	<1.0	<1.0	1.0	2181852
Selenium (Se)	ug/L	<1.0	<1.0	1.0	2181852
Uranium (U)	ug/L	<0.60	<0.60	0.60	2181852
Zinc (Zn)	ug/L	<5.0	<5.0	5.0	2181852

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					JA6221	JA6222	JA6223		
Sampling Date					2021/02/20	2021/04/04	2021/04/12		
COC Number					808542-01-01	808542-01-01	808542-01-01		
	Units	Α	В	С	TSMC-81181	TSMC-81539	TSMC-81655	RDL	QC Batch
% MOISTURE	%	-	-	-	0.2	3.6	7.4	N/A	N/A
CONVENTIONALS	•								
Fluoride (F)	mg/kg	200	400	2000	<1.0	<1.0	<1.0	1.0	2181625
Nitrates (N-NO3-) †	mg/kg	-	ı		<1.0	1.2	96	1.0	2181649
Nitrites (N-NO2-) †	mg/kg	-	-		<0.20	<0.20	<0.20	0.20	2181649
Nitrate (N) and Nitrite(N)	mg/kg	-	-		<1.0	1.2	96	1.0	2181649

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		JA6221	JA6222	JA6223		JA6334		
Sampling Date		2021/02/20	2021/04/04	2021/04/12		2021/02/20		
COC Number		808542-01-01	808542-01-01	808542-01-01		808542-01-01		
	Units	TSMC-81181	TSMC-81539	TSMC-81655	QC Batch	TSMC-81181-CTEU-9	RDL	QC Batch
% MOISTURE	%	0.2	3.6	7.4	N/A	N/A	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	<1.0	<1.0	2181795	<1.0	1.0	2184906
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	<0.20	2182591	<0.20	0.20	2184909
Nitrate (N) and Nitrite(N)	mg/L	<0.20	<0.20	2.9	2182591	<0.20	0.20	2184909

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		JA6344	JA6346		JA6387				
Sampling Date		2021/04/04	2021/04/12		2021/02/20				
COC Number		808542-01-01	808542-01-01		808542-01-01				
	Units	TSMC-81539-CTEU-9	TSMC-81655-CTEU-9	QC Batch	TSMC-81181-(SPLP1312)	RDL	QC Batch		
CONVENTIONALS									
Fluoride (F)	mg/L	<1.0	<1.0	2184906	<1.0	1.0	2182027		
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	2184909	<0.20	0.20	2182026		
Nitrate (N) and Nitrite(N)	mg/L	<0.20	4.4	2184909	<0.20	0.20	2182026		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Lab BV ID		JA6388	JA6389						
Sampling Date		2021/04/04	2021/04/12						
COC Number		808542-01-01	808542-01-01						
	Units	TSMC-81539-(SPLP1312)	TSMC-81655-(SPLP1312)	RDL	QC Batch				
CONVENTIONALS									
Fluoride (F)	mg/L	<1.0	<1.0	1.0	2182027				
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	0.20	2182026				
Nitrate (N) and Nitrite(N)	mg/L	0.21	2.9	0.20	2182026				
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

TCLP-EPA 1311 (SOIL)

Lab BV ID		JA6221	JA6222	JA6223						
Sampling Date		2021/02/20	2021/04/04	2021/04/12						
COC Number		808542-01-01	808542-01-01	808542-01-01						
	Units	TSMC-81181	TSMC-81539	TSMC-81655	QC Batch					
% MOISTURE	%	0.2	3.6	7.4	N/A					
Leachates										
Weight of sample (g)	n/a	20.1	20.1	20.0	2182160					
pH end of leaching	n/a	5.14	5.08	4.92	2182160					
Volume extracting fluid 1 (ml)	n/a	400	400	400	2182160					
QC Batch = Quality Control Batc	QC Batch = Quality Control Batch									

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

SPLP-EPA 1312 (SOIL)

Lab BV ID		JA6387	JA6388	JA6389	
Sampling Date		2021/02/20	2021/04/04	2021/04/12	
COC Number		808542-01-01	808542-01-01	808542-01-01	
	Units	TSMC-81181-(SPLP1312)	TSMC-81539-(SPLP1312)	TSMC-81655-(SPLP1312)	QC Batch
Leachates					
Weight of sample (g)	n/a	25.1	25.0	25.0	2181332
Volume of extracting fluid (mL)	n/a	500	500	500	2181332
pH after 18 hours leaching	n/a	6.37	5.69	5.24	2181332
pH of extracting fluid	n/a	4.15	4.15	4.15	2181332
QC Batch = Quality Control Batch	1				

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		JA6334	JA6344	JA6346					
Sampling Date		2021/02/20	2021/04/04	2021/04/12					
COC Number		808542-01-01	808542-01-01	808542-01-01					
	Units	TSMC-81181-CTEU-9	TSMC-81539-CTEU-9	TSMC-81655-CTEU-9	QC Batch				
Leachates									
Weight of sample (g)	n/a	40.1	40.0	40.1	2182500				
pH Deionized water	n/a	5.83	5.83	5.83	2182500				
Date extraction fluid added	n/a	2021/05/04	2021/05/04	2021/05/04	2182500				
Date leaching terminated	n/a	2021/05/11	2021/05/11	2021/05/11	2182500				
Volume of extracting fluid (mL)	n/a	160	160	160	2182500				
pH after 7 days of leaching	n/a	6.83	6.80	7.65	2182500				
QC Batch = Quality Control Batch	1								

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

GENERAL COMMENTS

Total Extractable Metals (low level): Holding time already past upon reception.: JA6221

A,B,C: Soil Criteria following appendix 2 of the " Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled " Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

TOTAL EXTRACTABLE METALS (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Nitrites and Nitrates: Due to the sample matrix, a better detection limit cannot be reported.

TCLP-EPA 1311 (SOIL)

pH du pré-test: Veuillez noter que le résultat de l'échantillon est en dehors de la courbe de calibration (pH 4 - 10), et aussi dehors des limites de la linéarité (pH 1.68 - 13.0).

Results relate only to the items tested.

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2181332	SMD	Method Blank	Volume of extracting fluid (mL)	2021/04/30	500		n/a
			pH after 18 hours leaching	2021/04/30	4.22		n/a
			pH of extracting fluid	2021/04/30	4.15		n/a
2181623	AT7	Spiked Blank	Silver (Ag)	2021/04/30		86	%
			Arsenic (As)	2021/04/30		95	%
			Barium (Ba)	2021/04/30		96	%
			Boron (B)	2021/04/30		111	%
			Cadmium (Cd)	2021/04/30		94	%
			Chromium (Cr)	2021/04/30		94	%
			Copper (Cu)	2021/04/30		93	%
			Cobalt (Co)	2021/04/30		86	%
			Tin (Sn)	2021/04/30		93	%
			Iron (Fe)	2021/04/30		98	%
			Manganese (Mn)	2021/04/30		93	%
			Molybdenum (Mo)	2021/04/30		86	%
			Nickel (Ni)	2021/04/30		95	%
			Mercury (Hg)	2021/04/30		94	%
			Lead (Pb)	2021/04/30		97	%
			Selenium (Se)	2021/04/30		98	%
			Uranium (U)	2021/04/30		98	%
			Zinc (Zn)	2021/04/30		94	%
2181623	AT7	Method Blank	Silver (Ag)	2021/04/30	<0.50		mg/kg
2101020	, , , ,	memod blank	Arsenic (As)	2021/04/30	<2.0		mg/kg
			Barium (Ba)	2021/04/30	<4.0		mg/kg
			Boron (B)	2021/04/30	<2.0		mg/kg
			Cadmium (Cd)	2021/04/30	<0.10		mg/kg
			Chromium (Cr)	2021/04/30	<1.0		mg/kg
			Copper (Cu)	2021/04/30	<1.0		mg/kg
			Cobalt (Co)	2021/04/30	<1.0		mg/kg
			Tin (Sn)	2021/04/30	<1.0		mg/kg
			Iron (Fe)	2021/04/30	<10		mg/kg
			Manganese (Mn)	2021/04/30	<2.0		mg/kg
			Molybdenum (Mo)	2021/04/30	<0.50		mg/kg
				2021/04/30	<0.50		
			Nickel (Ni) Mercury (Hg)	2021/04/30	<0.010		mg/kg
					<1.0		mg/kg
			Lead (Pb)	2021/04/30			mg/kg
			Selenium (Se)	2021/04/30	<0.50		mg/kg
			Uranium (U)	2021/04/30	<2.0		mg/kg
2404625	\ /D 4	Coding al Diagram	Zinc (Zn)	2021/04/30	<5.0	101	mg/kg
2181625	VPA	Spiked Blank	Fluoride (F)	2021/04/30	-1.0	101	%
2181625	VPA	Method Blank	Fluoride (F)	2021/04/30	<1.0	103	mg/kg
2181649	TGU	Spiked Blank	Nitrates (N-NO3-)	2021/05/01		103	%
			Nitrites (N-NO2-)	2021/05/01		100	%
24045.5	T 0		Nitrate (N) and Nitrite(N)	2021/05/01	4.0	101	%
2181649	TGU	Method Blank	Nitrates (N-NO3-)	2021/05/01	<1.0		mg/kg
			Nitrites (N-NO2-)	2021/05/01	<0.20		mg/kg
			Nitrate (N) and Nitrite(N)	2021/05/01	<1.0		mg/kg
2181778	NET	LEACH. BLANK	Silver (Ag)	2021/04/30	<0.30		ug/L
			Arsenic (As)	2021/04/30	<2.0		ug/L
			Barium (Ba)	2021/04/30	<5.0		ug/L

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

QUALITY ASSURANCE REPORT(CONT'D)

		,	QUALITY ASSURANCE	REPORT(CONT D)			
QA/QC	1	00 To 100	D	Data Analysis	\	D	11
Batch	Init	QC Type	Parameter Boron (B)	Date Analyzed 2021/04/30	Value <50	Recovery	Units
			• •				ug/L
			Cadmium (Cd)	2021/04/30 2021/04/30	<1.0 <7.0		ug/L
			Chromium (Cr)	2021/04/30	<10		ug/L
			Cobalt (Co)				ug/L
			Copper (Cu)	2021/04/30 2021/04/30	<3.0 <50		ug/L ug/L
			Tin (Sn) Iron (Fe)	2021/04/30	<100		ug/L ug/L
				2021/04/30	<3.0		
			Manganese (Mn) Mercury (Hg)	2021/04/30	<0.50		ug/L
			,				ug/L
			Molybdenum (Mo)	2021/04/30	<10 <6.0		ug/L
			Nickel (Ni)	2021/04/30 2021/04/30	<1.0		ug/L
			Lead (Pb)				ug/L
			Selenium (Se)	2021/04/30	<1.0 <0.60		ug/L ug/L
			Uranium (U)	2021/04/30	<0.60 <5.0		
2181778	NET	Spiked Blank	Zinc (Zn) Silver (Ag)	2021/04/30	<5.0	92	ug/L %
2101//0	NET	эрікей біапк		2021/04/30 2021/04/30		100	%
			Arsenic (As) Barium (Ba)	2021/04/30		96	%
			Boron (B)	2021/04/30		107	% %
			Cadmium (Cd)	2021/04/30		107	% %
				2021/04/30		95	% %
			Chromium (Cr) Cobalt (Co)	2021/04/30		95 96	%
			• •	2021/04/30		94	% %
			Copper (Cu)			107	% %
			Tin (Sn) Iron (Fe)	2021/04/30 2021/04/30		107	% %
			• •	2021/04/30		96	%
			Manganese (Mn) Mercury (Hg)	2021/04/30		100	%
			Molybdenum (Mo)	2021/04/30		99	%
			Nickel (Ni)	2021/04/30		94	% %
			Lead (Pb)	2021/04/30		94 95	%
			Selenium (Se)	2021/04/30		99	% %
			Uranium (U)	2021/04/30		94	% %
			Zinc (Zn)	2021/04/30		96	%
2181795	VPA	LEACH. BLANK	Fluoride (F)	2021/04/30	<1.0	30	mg/L
2181795	VPA	Spiked Blank	Fluoride (F)	2021/04/30	<1.0	107	111g/ L %
2181793	NET	LEACH. BLANK	Silver (Ag)	2021/04/30	<0.30	107	ug/L
2101032	INE	LEACH. BLAINK	Arsenic (As)	2021/04/30	<2.0		ug/L ug/L
			Barium (Ba)	2021/04/30	<5.0		ug/L ug/L
			Boron (B)	2021/04/30	<50		ug/L ug/L
			Cadmium (Cd)	2021/04/30	<1.0		ug/L ug/L
			Chromium (Cr)				
			Cobalt (Co)	2021/04/30 2021/04/30	<7.0 <10		ug/L ug/L
			Copper (Cu)	2021/04/30	<3.0		ug/L ug/L
			Tin (Sn)	2021/04/30	<5.0 <50		ug/L ug/L
			Iron (Fe)	2021/04/30	<100		ug/L ug/L
			Manganese (Mn)	2021/04/30	<3.0		ug/L ug/L
				2021/04/30	<3.0 <0.50		ug/L ug/L
			Mercury (Hg)				
			Molybdenum (Mo) Nickel (Ni)	2021/04/30 2021/04/30	<10		ug/L ug/L
			Lead (Pb)	2021/04/30	<6.0 <1.0		
			Ledu (FD)	2021/04/30	\1.U		ug/L

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Selenium (Se)	2021/04/30	1.2,	•	ug/L
					RDL=1.0		
			Uranium (U)	2021/04/30	<0.60		ug/L
			Zinc (Zn)	2021/04/30	<5.0		ug/L
2181852	NET	Spiked Blank	Silver (Ag)	2021/04/30		98	%
			Arsenic (As)	2021/04/30		100	%
			Barium (Ba)	2021/04/30		98	%
			Boron (B)	2021/04/30		106	%
			Cadmium (Cd)	2021/04/30		107	%
			Chromium (Cr)	2021/04/30		95	%
			Cobalt (Co)	2021/04/30		96	%
			Copper (Cu)	2021/04/30		94	%
			Tin (Sn)	2021/04/30		113	%
			Iron (Fe)	2021/04/30		100	%
			Manganese (Mn)	2021/04/30		99	%
			Mercury (Hg)	2021/04/30		100	%
			Molybdenum (Mo)	2021/04/30		106	%
			Nickel (Ni)	2021/04/30		93	%
			Lead (Pb)	2021/04/30		95	%
			Selenium (Se)	2021/04/30		108	%
			Uranium (U)	2021/04/30		94	%
			Zinc (Zn)	2021/04/30		96	%
2182026	JGZ	LEACH. BLANK	Nitrites (N-NO2-)	2021/05/02	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/05/02	<0.20		mg/L
2182026	JGZ	Spiked Blank	Nitrites (N-NO2-)	2021/05/02		101	%
		•	Nitrate (N) and Nitrite(N)	2021/05/02		103	%
2182027	VPA	LEACH. BLANK	Fluoride (F)	2021/05/01	<1.0		mg/L
2182027	VPA	Spiked Blank	Fluoride (F)	2021/05/01		101	%
2182160	SMD	Method Blank	pH end of leaching	2021/05/04	4.96		n/a
			Volume extracting fluid 1 (ml)	2021/05/04	400		n/a
2182500	SMD	Method Blank	pH Deionized water	2021/05/11	5.83		n/a
			Date extraction fluid added	2021/05/11	2021/05/04		n/a
			Date leaching terminated	2021/05/11	2021/05/11		n/a
			Volume of extracting fluid (mL)	2021/05/11	160		n/a
			pH after 7 days of leaching	2021/05/11	6.79		n/a
2182591	VPA	LEACH. BLANK	Nitrites (N-NO2-)	2021/05/05	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/05/05	<0.20		mg/L
2182591	VPA	Spiked Blank	Nitrites (N-NO2-)	2021/05/05		99	%
		- r	Nitrate (N) and Nitrite(N)	2021/05/05		101	%
2184801	NET	LEACH. BLANK	Silver (Ag)	2021/05/13	<0.30		ug/L
			Arsenic (As)	2021/05/13	<2.0		ug/L
			Barium (Ba)	2021/05/13	<5.0		ug/L
			Boron (B)	2021/05/13	<50		ug/L
			Cadmium (Cd)	2021/05/13	<1.0		ug/L
			Chromium (Cr)	2021/05/13	<7.0		ug/L
			Cobalt (Co)	2021/05/13	<10		ug/L
			Copper (Cu)	2021/05/13	<3.0		ug/L
			Tin (Sn)	2021/05/13	<50		ug/L ug/L
			Iron (Fe)	2021/05/13	<100		ug/L ug/L
			Manganese (Mn)	2021/05/13	<3.0		ug/L ug/L

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Mercury (Hg)	2021/05/13	<0.50		ug/L
			Molybdenum (Mo)	2021/05/13	<10		ug/L
			Nickel (Ni)	2021/05/13	<6.0		ug/L
			Lead (Pb)	2021/05/13	<1.0		ug/L
			Selenium (Se)	2021/05/13	<1.0		ug/L
			Uranium (U)	2021/05/13	<0.60		ug/L
			Zinc (Zn)	2021/05/13	<5.0		ug/L
2184801	NET	Spiked Blank	Silver (Ag)	2021/05/13		107	%
			Arsenic (As)	2021/05/13		107	%
			Barium (Ba)	2021/05/13		112	%
			Boron (B)	2021/05/13		113	%
			Cadmium (Cd)	2021/05/13		111	%
			Chromium (Cr)	2021/05/13		99	%
			Cobalt (Co)	2021/05/13		100	%
			Copper (Cu)	2021/05/13		94	%
			Tin (Sn)	2021/05/13		114	%
			Iron (Fe)	2021/05/13		104	%
			Manganese (Mn)	2021/05/13		104	%
			Mercury (Hg)	2021/05/13		95	%
			Molybdenum (Mo)	2021/05/13		118	%
			Nickel (Ni)	2021/05/13		98	%
			Lead (Pb)	2021/05/13		103	%
			Selenium (Se)	2021/05/13		104	%
			Uranium (U)	2021/05/13		105	%
			Zinc (Zn)	2021/05/13		100	%
2184906	VPA	LEACH. BLANK	Fluoride (F)	2021/05/14	<1.0		mg/L
2184906	VPA	Spiked Blank	Fluoride (F)	2021/05/14		102	%
2184909	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/05/12	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/05/12	<0.20		mg/L
2184909	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/05/12		103	%
		•	Nitrate (N) and Nitrite(N)	2021/05/12		104	%

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD Your P.O. #: 3000000997 Sampler Initials: CS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Alex Thibert Alex Thibert, B.Sc., Chemist, Montréal, Analyst II, Chemist in Training

Frederic Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

Michelina Cinquino, Analyst II

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997

Your Project #: GOODWOOD-ARD Your C.O.C. #: 817816-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/06/18

Report #: R2666968 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C121681 Received: 2021/05/14, 08:45

Sample Matrix: Soil # Samples Received: 3

# Samples Neceived. S		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	1	2021/06/18	N/A		-
Grinding	1	N/A	2021/05/17	STL SOP-00019	N/A
Fluoride (free)	1	2021/05/19	2021/05/20	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/05/21	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/05/22	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/05/28	STL SOP-00038	SM 23 4500-F m
Mercury by ICP-MS	1	2021/05/14	2021/05/20	III-105 rév.10 03/09/25	MA.200-Mét. 1.2 R7
Water Leachate (CTEU - 9)	1	2021/05/19	2021/05/26	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	1	2021/05/19	2021/05/20	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	1	2021/05/19	2021/05/20	STL SOP-00069	MA.200-Mét. 1.2 R7
Metals - Leached	1	2021/05/21	2021/05/25	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	1	2021/05/21	2021/05/27	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	1	2021/05/27	2021/05/28	STL SOP-00062	MA.200-Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	2	N/A	2021/05/22	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	1	N/A	2021/05/28	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	1	2021/05/19	2021/05/22	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	1	2021/05/19	2021/05/20	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the

Your P.O. #: 3000000997

Your Project #: GOODWOOD-ARD Your C.O.C. #: 817816-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/06/18

Report #: R2666968 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C121681 Received: 2021/05/14, 08:45 customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas - Burnaby

 $Note: All\ parameters\ included\ in\ the\ present\ certificate\ are\ accredited\ by\ the\ MELCC\ unless\ stated\ otherwise.$

Encryption Key

Ma Pr Ma 21

Martine Lepage Project Manager and Account Manager 21 Jun 2021 14:12:39

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

 ${\it Email: Martine. LEPAGE@bureauveritas.com}$

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					JC6686		
Sampling Date					2021/05/09		
COC Number					817816-01-01		
	Units	Α	В	С	TSMC-81181	RDL	QC Batch
% MOISTURE	%	-	-	-	13	N/A	N/A
METALS	-						
Silver (Ag)	mg/kg	2	20	40	<0.50	0.50	2187617
Arsenic (As)	mg/kg	6	30	50	5.2	2.0	2187617
Barium (Ba)	mg/kg	340	500	2000	<4.0	4.0	2187617
Boron (B)	mg/kg	-	-		6.1	2.0	2187617
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	0.10	2187617
Chromium (Cr)	mg/kg	100	250	800	18	1.0	2187617
Copper (Cu)	mg/kg	50	100	500	1.6	1.0	2187617
Cobalt (Co)	mg/kg	25	50	300	1.9	1.0	2187617
Tin (Sn)	mg/kg	5	50	300	<1.0	1.0	2187617
Iron (Fe) †	mg/kg	-	-		78000	10	2187617
Manganese (Mn)	mg/kg	1000	1000	2200	99	2.0	2187617
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	0.50	2187617
Nickel (Ni)	mg/kg	50	100	500	1.4	0.50	2187617
Mercury (Hg)	mg/kg	0.2	2	10	0.042	0.010	2187617
Lead (Pb)	mg/kg	50	500	1000	7.6	1.0	2187617
Selenium (Se)	mg/kg	1	3	10	<0.50	0.50	2187617
Uranium (U) †	mg/kg	-	-		<2.0	2.0	2187617
Zinc (Zn)	mg/kg	140	500	1500	<5.0	5.0	2187617

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000997

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JC6686		JC6689		JC6692		
Sampling Date		2021/05/09		2021/05/09		2021/05/09		
COC Number		817816-01-01		817816-01-01		817816-01-01		
	Units	TSMC-81181	QC Batch	TSMC-81181-CTEU-9	QC Batch	TSMC-81181-(SPLP1312)	RDL	QC Batch
% MOISTURE	%	13	N/A	N/A	N/A	N/A	N/A	N/A
METALS								
Silver (Ag) †	ug/L	<0.30	2188538	<0.30	2190353	<0.30	0.30	2188573
Arsenic (As)	ug/L	<2.0	2188538	<2.0	2190353	<2.0	2.0	2188573
Barium (Ba)	ug/L	<5.0	2188538	<5.0	2190353	<5.0	5.0	2188573
Boron (B)	ug/L	<50	2188538	<50	2190353	<50	50	2188573
Cadmium (Cd)	ug/L	<1.0	2188538	<1.0	2190353	<1.0	1.0	2188573
Chromium (Cr)	ug/L	<7.0	2188538	<7.0	2190353	<7.0	7.0	2188573
Cobalt (Co)	ug/L	<10	2188538	<10	2190353	<10	10	2188573
Copper (Cu)	ug/L	<3.0	2188538	<3.0	2190353	<3.0	3.0	2188573
Tin (Sn) †	ug/L	<50	2188538	<50	2190353	<50	50	2188573
Iron (Fe)	ug/L	<100	2188538	110	2190353	<100	100	2188573
Manganese (Mn)	ug/L	11	2188538	<3.0	2190353	<3.0	3.0	2188573
Mercury (Hg)	ug/L	<0.50	2188538	<0.50	2190353	<0.50	0.50	2188573
Molybdenum (Mo)	ug/L	<10	2188538	<10	2190353	<10	10	2188573
Nickel (Ni)	ug/L	<6.0	2188538	<6.0	2190353	<6.0	6.0	2188573
Lead (Pb)	ug/L	<1.0	2188538	<1.0	2190353	<1.0	1.0	2188573
Selenium (Se)	ug/L	<1.0	2188538	<1.0	2190353	<1.0	1.0	2188573
Uranium (U)	ug/L	<0.60	2188538	<0.60	2190353	<0.60	0.60	2188573
Zinc (Zn)	ug/L	<5.0	2188538	15	2190353	<5.0	5.0	2188573

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					JC6686		
Sampling Date					2021/05/09		
COC Number					817816-01-01		
	Units	Α	В	С	TSMC-81181	RDL	QC Batch
% MOISTURE	%	-	-	-	13	N/A	N/A
CONVENTIONALS							
Fluoride (F)	mg/kg	200	400	2000	<1.0	1.0	2187839
Nitrates (N-NO3-) †	mg/kg	-	-		<1.0	1.0	2187847
Nitrites (N-NO2-) †	mg/kg	-	-		<0.20	0.20	2187847
Nitrate (N) and Nitrite(N)	mg/kg	-	-		<1.0	1.0	2187847

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		JC6686		JC6689		JC6692		
Sampling Date		2021/05/09		2021/05/09		2021/05/09		
COC Number		817816-01-01		817816-01-01		817816-01-01		
	Units	TSMC-81181	QC Batch	TSMC-81181-CTEU-9	QC Batch	TSMC-81181-(SPLP1312)	RDL	QC Batch
% MOISTURE	%	13	N/A	N/A	N/A	N/A	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	2188741	<1.0	2190331	<1.0	1.0	2188870
Nitrites (N-NO2-)	mg/L	<0.20	2188885	<0.20	2190336	<0.20	0.20	2189028
Nitrate (N) and Nitrite(N)	mg/L	<0.20	2188885	<0.20	2190336	<0.20	0.20	2189028

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

TCLP-EPA 1311 (SOIL)

Lab BV ID		JC6686						
Sampling Date		2021/05/09						
COC Number		817816-01-01						
	Units	TSMC-81181	QC Batch					
% MOISTURE	%	13	N/A					
Leachates								
Weight of sample (g)	n/a	20.0	2187567					
pH of pre-test	n/a	<1.68	2187567					
pH end of leaching	n/a	4.98	2187567					
Volume extracting fluid 1 (ml)	n/a	400	2187567					
QC Batch = Quality Control Batch N/A = Not Applicable								

SPLP-EPA 1312 (SOIL)

Lab BV ID		JC6692						
Sampling Date		2021/05/09						
COC Number		817816-01-01						
	Units	TSMC-81181-(SPLP1312)	QC Batch					
Leachates								
Weight of sample (g)	n/a	25.1	2187637					
Volume of extracting fluid (mL)	n/a	500	2187637					
pH after 18 hours leaching	n/a	11.5	2187637					
pH of extracting fluid	n/a	4.20	2187637					
QC Batch = Quality Control Batch	1							

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		JC6689	
Sampling Date		2021/05/09	
COC Number		817816-01-01	
	Units	TSMC-81181-CTEU-9	QC Batch
Leachates			
Weight of sample (g)	n/a	40.1	2187651
pH Deionized water	n/a	5.51	2187651
Date extraction fluid added	n/a	2021/05/19	2187651
Date leaching terminated	n/a	2021/05/26	2187651
Volume of extracting fluid (mL)	n/a	160	2187651
pH after 7 days of leaching	n/a	7.52	2187651
QC Batch = Quality Control Batch	1		

Your P.O. #: 3000000997

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled " Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above.The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

SPLP-EPA 1312 (SOIL)

pH de lixiviation final: Veuillez noter que le résultat de l'échantillon est en dehors de la courbe de calibration(pH 4 - 10), mais à l'intérieur des limites de la linéarité (pH 1.68 - 13.0).

Results relate only to the items tested.

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2187567	SMD	Method Blank	pH end of leaching	2021/05/20	4.88/2.84	· · · · · · · · · · · · · · · · · · ·	n/a
			Volume extracting fluid 1 (ml)	2021/05/20	400		n/a
2187617	AT7	Spiked Blank	Silver (Ag)	2021/05/20		106	%
			Arsenic (As)	2021/05/20		121	%
			Barium (Ba)	2021/05/20		116	%
			Boron (B)	2021/05/20		120	%
			Cadmium (Cd)	2021/05/20		116	%
			Chromium (Cr)	2021/05/20		120	%
			Copper (Cu)	2021/05/20		119	%
			Cobalt (Co)	2021/05/20		119	%
			Tin (Sn)	2021/05/20		120	%
			Iron (Fe)	2021/05/20		108	%
			Manganese (Mn)	2021/05/20		118	%
			Molybdenum (Mo)	2021/05/20		112	%
			Nickel (Ni)	2021/05/20		119	%
			Mercury (Hg)	2021/05/20		113	%
			Lead (Pb)	2021/05/20		108	%
			Selenium (Se)	2021/05/20		130 (1)	%
			Uranium (U)	2021/05/20		116	%
			Zinc (Zn)	2021/05/20		119	%
2187617	AT7	Method Blank	Silver (Ag)	2021/05/20	<0.50		mg/kg
			Arsenic (As)	2021/05/20	<2.0		mg/kg
			Barium (Ba)	2021/05/20	<4.0		mg/kg
			Boron (B)	2021/05/20	<2.0		mg/kg
			Cadmium (Cd)	2021/05/20	<0.10		mg/kg
			Chromium (Cr)	2021/05/20	<1.0		mg/kg
			Copper (Cu)	2021/05/20	<1.0		mg/kg
			Cobalt (Co)	2021/05/20	<1.0		mg/kg
			Tin (Sn)	2021/05/20	<1.0		mg/kg
			Iron (Fe)	2021/05/20	<10		mg/kg
			Manganese (Mn)	2021/05/20	<2.0		mg/kg
			Molybdenum (Mo)	2021/05/20	<0.50		mg/kg
			Nickel (Ni)	2021/05/20	<0.50		mg/kg
			Mercury (Hg)	2021/05/20	<0.010		mg/kg
			Lead (Pb)	2021/05/20	<1.0		mg/kg
			Selenium (Se)	2021/05/20	<0.50		mg/kg
			Uranium (U)	2021/05/20	<2.0		mg/kg
			Zinc (Zn)	2021/05/20	<5.0		mg/kg
2187637	SMD	Method Blank	Volume of extracting fluid (mL)	2021/05/20	500		n/a
			pH after 18 hours leaching	2021/05/20	4.22		n/a
			pH of extracting fluid	2021/05/20	4.20		n/a
2187651	SMD	Method Blank	pH Deionized water	2021/05/26	5.51		n/a
			Date extraction fluid added	2021/05/26	2021/05/19		n/a
			Date leaching terminated	2021/05/26	2021/05/26		n/a
			Volume of extracting fluid (mL)	2021/05/26	160		n/a
			pH after 7 days of leaching	2021/05/26	6.99		n/a
2187839	SBD	Spiked Blank	Fluoride (F)	2021/05/20		96	%
2187839	SBD	Method Blank	Fluoride (F)	2021/05/20	<1.0		mg/kg
2187847	TGU	Spiked Blank	Nitrates (N-NO3-)	2021/05/22		99	%
			Nitrites (N-NO2-)	2021/05/22		100	%
			Nitrate (N) and Nitrite(N)	2021/05/22		99	%
2187847	TGU	Method Blank	Nitrates (N-NO3-)	2021/05/22	<1.0		mg/kg

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			QUALITY ASSURANCE RE				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Nitrites (N-NO2-)	2021/05/22	<0.20		mg/kg
			Nitrate (N) and Nitrite(N)	2021/05/22	<1.0		mg/kg
2188538	NET	LEACH. BLANK	Silver (Ag)	2021/05/27	< 0.30		ug/L
			Arsenic (As)	2021/05/27	<2.0		ug/L
			Barium (Ba)	2021/05/27	<5.0		ug/L
			Boron (B)	2021/05/27	<50		ug/L
			Cadmium (Cd)	2021/05/27	<1.0		ug/L
			Chromium (Cr)	2021/05/27	<7.0		ug/L
			Cobalt (Co)	2021/05/27	<10		ug/L
			Copper (Cu)	2021/05/27	4.9,		ug/L
					RDL=3.0		
			Tin (Sn)	2021/05/27	<50		ug/L
			Iron (Fe)	2021/05/27	<100		ug/L
			Manganese (Mn)	2021/05/27	<3.0		ug/L
			Mercury (Hg)	2021/05/27	<0.50		ug/L
			Molybdenum (Mo)	2021/05/27	<10		ug/L
			Nickel (Ni)	2021/05/27	<6.0		ug/L
			Lead (Pb)	2021/05/27	<1.0		ug/L
			Selenium (Se)	2021/05/27	<1.0		ug/L
			Uranium (U)	2021/05/27	<0.60		ug/L
			Zinc (Zn)	2021/05/27	<5.0		ug/L
2188538	NET	Spiked Blank	Silver (Ag)	2021/05/27		87	%
			Arsenic (As)	2021/05/27		105	%
			Barium (Ba)	2021/05/27		100	%
			Boron (B)	2021/05/27		107	%
			Cadmium (Cd)	2021/05/27		92	%
			Chromium (Cr)	2021/05/27		97	%
			Cobalt (Co)	2021/05/27		94	%
			Copper (Cu)	2021/05/27		92	%
			Tin (Sn)	2021/05/27		99	%
			Iron (Fe)	2021/05/27		89	%
			Manganese (Mn)	2021/05/27		101	%
			Mercury (Hg)	2021/05/27		101	%
			Molybdenum (Mo)	2021/05/27		92	%
			Nickel (Ni)	2021/05/27		94	%
			Lead (Pb)	2021/05/27		91	%
			Selenium (Se)	2021/05/27		97	%
			Uranium (U)	2021/05/27		91	%
			Zinc (Zn)	2021/05/27		97	%
2188573	NET	LEACH. BLANK	Silver (Ag)	2021/05/25	<0.30	<u> </u>	ug/L
2200575	.,	22, 10111 22 1111	Arsenic (As)	2021/05/25	<2.0		ug/L
			Barium (Ba)	2021/05/25	<5.0		ug/L
			Boron (B)	2021/05/25	<50		ug/L
			Cadmium (Cd)	2021/05/25	<1.0		ug/L
			Chromium (Cr)	2021/05/25	<7.0		ug/L
			Cobalt (Co)	2021/05/25	<10		ug/L
			Copper (Cu)	2021/05/25	5.0,		ug/L
					RDL=3.0		
			Tin (Sn)	2021/05/25	<50		ug/L
			Iron (Fe)	2021/05/25	<100		ug/L
			Manganese (Mn)	2021/05/25	<3.0		ug/L
			Mercury (Hg)	2021/05/25	<0.50		ug/L

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Molybdenum (Mo)	2021/05/25	<10	•	ug/L
			Nickel (Ni)	2021/05/25	<6.0		ug/L
			Lead (Pb)	2021/05/25	<1.0		ug/L
			Selenium (Se)	2021/05/25	<1.0		ug/L
			Uranium (U)	2021/05/25	<0.60		ug/L
			Zinc (Zn)	2021/05/25	<5.0		ug/L
2188573	NET	Spiked Blank	Silver (Ag)	2021/05/25		98	%
		- - - · · · · · · · · · · · · · · · · · ·	Arsenic (As)	2021/05/25		101	%
			Barium (Ba)	2021/05/25		103	%
			Boron (B)	2021/05/25		103	%
			Cadmium (Cd)	2021/05/25		97	%
			Chromium (Cr)	2021/05/25		95	%
			Cobalt (Co)	2021/05/25		95	%
			Copper (Cu)	2021/05/25		88	%
			Tin (Sn)	2021/05/25		105	%
			Iron (Fe)	2021/05/25		93	%
			Manganese (Mn)	2021/05/25		100	%
			Mercury (Hg)	2021/05/25		106	% %
						100	%
			Molybdenum (Mo)	2021/05/25			
			Nickel (Ni)	2021/05/25		96	%
			Lead (Pb)	2021/05/25		99	%
			Selenium (Se)	2021/05/25		87	%
			Uranium (U)	2021/05/25		99	%
			Zinc (Zn)	2021/05/25		94	%
2188741	SBD	LEACH. BLANK	Fluoride (F)	2021/05/21	<1.0		mg/L
2188741	SBD	Spiked Blank	Fluoride (F)	2021/05/21		102	%
2188870	SBD	LEACH. BLANK	Fluoride (F)	2021/05/22	<1.0		mg/L
2188870	SBD	Spiked Blank	Fluoride (F)	2021/05/22		107	%
2188885	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/05/22	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/05/22	<0.20		mg/L
2188885	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/05/22		102	%
			Nitrate (N) and Nitrite(N)	2021/05/22		100	%
2188885	TGU	Method Blank	Nitrites (N-NO2-)	2021/05/22	<0.020		mg/L
			Nitrate (N) and Nitrite(N)	2021/05/22	<0.020		mg/L
2189028	ABT	LEACH. BLANK	Nitrites (N-NO2-)	2021/05/22	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/05/22	<0.20		mg/L
2189028	ABT	Spiked Blank	Nitrites (N-NO2-)	2021/05/22		97	%
			Nitrate (N) and Nitrite(N)	2021/05/22		97	%
2190331	VPA	LEACH. BLANK	Fluoride (F)	2021/05/28	<1.0		mg/L
2190331	VPA	Spiked Blank	Fluoride (F)	2021/05/28		104	%
2190336	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/05/28	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/05/28	<0.20		mg/L
2190336	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/05/28		99	%
		•	Nitrate (N) and Nitrite(N)	2021/05/28		97	%
2190353	ZEO	LEACH. BLANK	Silver (Ag)	2021/05/27	<0.30		ug/L
	-	•	Arsenic (As)	2021/05/27	<2.0		ug/L
			Barium (Ba)	2021/05/27	<5.0		ug/L
			Boron (B)	2021/05/27	<50		ug/L
			Cadmium (Cd)	2021/05/27	<1.0		ug/L
			Chromium (Cr)	2021/05/27	<7.0		ug/L ug/L
			Cobalt (Co)	2021/05/27	<10		ug/L ug/L
			CODAIL (CO)	2021/05/27	~10		ug/L ug/L

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Tin (Sn)	2021/05/27	<50		ug/L
			Iron (Fe)	2021/05/27	<100		ug/L
			Manganese (Mn)	2021/05/27	<3.0		ug/L
			Mercury (Hg)	2021/05/27	<0.50		ug/L
			Molybdenum (Mo)	2021/05/27	<10		ug/L
			Nickel (Ni)	2021/05/27	<6.0		ug/L
			Lead (Pb)	2021/05/27	<1.0		ug/L
			Selenium (Se)	2021/05/27	<1.0		ug/L
			Uranium (U)	2021/05/27	<0.60		ug/L
			Zinc (Zn)	2021/05/27	<5.0		ug/L
2190353	ZEO	Spiked Blank	Silver (Ag)	2021/05/27		80	%
			Arsenic (As)	2021/05/27		108	%
			Barium (Ba)	2021/05/27		103	%
			Boron (B)	2021/05/27		110	%
			Cadmium (Cd)	2021/05/27		97	%
			Chromium (Cr)	2021/05/27		100	%
			Cobalt (Co)	2021/05/27		97	%
			Copper (Cu)	2021/05/27		94	%
			Tin (Sn)	2021/05/27		105	%
			Iron (Fe)	2021/05/27		93	%
			Manganese (Mn)	2021/05/27		104	%
			Mercury (Hg)	2021/05/27		106	%
			Molybdenum (Mo)	2021/05/27		98	%
			Nickel (Ni)	2021/05/27		97	%
			Lead (Pb)	2021/05/27		95	%
			Selenium (Se)	2021/05/27		104	%
			Uranium (U)	2021/05/27		97	%
			Zinc (Zn)	2021/05/27		100	%

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

Job #: C121681 TATA STEEL MINERALS CANADA
Date: 2021/06/18 Client Project #: GOODWOOD-ARD
Your P.O. #: 3000000997

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Frederic Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

Veronic Beausejour, B.Sc., Chemist, Supervisor

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997

Your Project #: GOODWOOD-ARD Your C.O.C. #: 808542-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/08/10

Report #: R2680342 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C126013 Received: 2021/06/02, 16:40

Sample Matrix: Soil # Samples Received: 6

# Jampies Received. 0		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	2	2021/08/10	N/A		
Grinding	2	N/A	2021/06/09	STL SOP-00019	N/A
Fluoride (free)	2	2021/06/08	2021/06/10	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	4	N/A	2021/06/10	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	2	N/A	2021/07/01	STL SOP-00038	SM 23 4500-F m
Mercury by ICP-MS	2	2021/06/03	2021/06/09	III-105 rév.10 03/09/25	MA.200-Mét. 1.2 R7
Water Leachate (CTEU - 9)	2	2021/06/22	2021/06/29	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	2	2021/06/08	2021/06/09	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	2	2021/06/08	2021/06/09	STL SOP-00069	MA.200-Mét. 1.2 R7
Metals - Leached	2	2021/06/29	2021/06/30	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	4	2021/06/09	2021/06/11	STL SOP-00062	MA.200-Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	2	N/A	2021/06/10	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	2	N/A	2021/06/30	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	2	N/A	2021/06/09	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	2	2021/06/08	2021/06/09	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	2	2021/06/08	2021/06/09	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your P.O. #: 3000000997

Your Project #: GOODWOOD-ARD Your C.O.C. #: 808542-01-01

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/08/10

Report #: R2680342 Version: 1 - Final

CERTIFICATE OF ANALYSIS

<u>LAB BV JOB #: C126013</u> Received: 2021/06/02, 16:40

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas - Burnaby

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Stephane Gagnon Project Manager 11 Aug 2021 08:55:38

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					JE8471	JE8472		
Sampling Date					2021/05/18	2021/05/15		
COC Number					808542-01-01	808542-01-01		
	Units	Α	В	С	TSMC-82180	TSMC-82126	RDL	QC Batch
% MOISTURE	%	-	-	-	4.4	0.5	N/A	N/A
METALS	•							
Silver (Ag)	mg/kg	2	20	40	<0.50	<0.50	0.50	2194823
Arsenic (As)	mg/kg	6	30	50	<2.0	<2.0	2.0	2194823
Barium (Ba)	mg/kg	340	500	2000	5.9	<4.0	4.0	2194823
Boron (B)	mg/kg	-	-		<2.0	<2.0	2.0	2194823
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	<0.10	0.10	2194823
Chromium (Cr)	mg/kg	100	250	800	<1.0	4.9	1.0	2194823
Copper (Cu)	mg/kg	50	100	500	2.1	<1.0	1.0	2194823
Cobalt (Co)	mg/kg	25	50	300	3.4	<1.0	1.0	2194823
Tin (Sn)	mg/kg	5	50	300	<1.0	<1.0	1.0	2194823
Iron (Fe) †	mg/kg	-	-		57000	43000	10	2194823
Manganese (Mn)	mg/kg	1000	1000	2200	470	67	2.0	2194823
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	<0.50	0.50	2194823
Nickel (Ni)	mg/kg	50	100	500	0.72	0.71	0.50	2194823
Mercury (Hg)	mg/kg	0.2	2	10	0.044	0.075	0.010	2194823
Lead (Pb)	mg/kg	50	500	1000	1.9	2.9	1.0	2194823
Selenium (Se)	mg/kg	1	3	10	<0.50	<0.50	0.50	2194823
Uranium (U) †	mg/kg	-	-		<2.0	<2.0	2.0	2194823
Zinc (Zn)	mg/kg	140	500	1500	<5.0	<5.0	5.0	2194823

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000997

METALS-LAB LEACHATE (SOIL)

	JE8471	JE8472		JE8474	JE8475		
	2021/05/18	2021/05/15		2021/05/18	2021/05/15		
	808542-01-01	808542-01-01		808542-01-01	808542-01-01		
Units	TSMC-82180	TSMC-82126	QC Batch	TSMC-82180-CTEU-9	TSMC-82126-CTEU-9	RDL	QC Batch
%	4.4	0.5	N/A	N/A	N/A	N/A	N/A
ug/L	<0.30	<0.30	2195496	<0.30	<0.30	0.30	2202498
ug/L	<2.0	<2.0	2195496	<2.0	<2.0	2.0	2202498
ug/L	6.1	8.3	2195496	<5.0	<5.0	5.0	2202498
ug/L	<50	<50	2195496	<50	<50	50	2202498
ug/L	<1.0	<1.0	2195496	<1.0	<1.0	1.0	2202498
ug/L	<7.0	<7.0	2195496	<7.0	<7.0	7.0	2202498
ug/L	<10	<10	2195496	<10	<10	10	2202498
ug/L	<3.0	<3.0	2195496	<3.0	<3.0	3.0	2202498
ug/L	<50	<50	2195496	<50	<50	50	2202498
ug/L	1000	<100	2195496	<100	330	100	2202498
ug/L	200	34	2195496	<3.0	<3.0	3.0	2202498
ug/L	<0.50	<0.50	2195496	<0.50	<0.50	0.50	2202498
ug/L	<10	<10	2195496	<10	<10	10	2202498
ug/L	<6.0	<6.0	2195496	<6.0	<6.0	6.0	2202498
ug/L	<1.0	<1.0	2195496	<1.0	<1.0	1.0	2202498
ug/L	<1.0	<1.0	2195496	<1.0	<1.0	1.0	2202498
ug/L	<0.60	<0.60	2195496	<0.60	<0.60	0.60	2202498
ug/L	<5.0	<5.0	2195496	<5.0	<5.0	5.0	2202498
	% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	2021/05/18 808542-01-01 Units TSMC-82180	2021/05/18 2021/05/15 808542-01-01 808542-01-01 Units TSMC-82180 TSMC-82126 % 4.4 0.5 ug/L <0.30	2021/05/18 2021/05/15 Image: Control of the contro	2021/05/18 2021/05/15 2021/05/18 808542-01-01 808542-01-01 808542-01-01	2021/05/18 2021/05/15 2021/05/18 2021/05/15 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01	2021/05/18 2021/05/15 2021/05/15 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01 808542-01-01

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Your P.O. #: 3000000997

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JE8477	JE8478		
Sampling Date		2021/05/18	2021/05/15		
COC Number		808542-01-01	808542-01-01		
	Units	TSMC-82180-(SPLP1312)	TSMC-82126-(SPLP1312)	RDL	QC Batch
METALS					
Silver (Ag) †	ug/L	<0.30	<0.30	0.30	2195498
Arsenic (As)	ug/L	<2.0	<2.0	2.0	2195498
Barium (Ba)	ug/L	<5.0	<5.0	5.0	2195498
Boron (B)	ug/L	<50	<50	50	2195498
Cadmium (Cd)	ug/L	<1.0	<1.0	1.0	2195498
Chromium (Cr)	ug/L	<7.0	<7.0	7.0	2195498
Cobalt (Co)	ug/L	<10	<10	10	2195498
Copper (Cu)	ug/L	<3.0	<3.0	3.0	2195498
Tin (Sn) †	ug/L	<50	<50	50	2195498
Iron (Fe)	ug/L	<100	<100	100	2195498
Manganese (Mn)	ug/L	9.2	<3.0	3.0	2195498
Mercury (Hg)	ug/L	<0.50	<0.50	0.50	2195498
Molybdenum (Mo)	ug/L	<10	<10	10	2195498
Nickel (Ni)	ug/L	<6.0	<6.0	6.0	2195498
Lead (Pb)	ug/L	<1.0	<1.0	1.0	2195498
Selenium (Se)	ug/L	<1.0	<1.0	1.0	2195498
Uranium (U)	ug/L	<0.60	<0.60	0.60	2195498
Zinc (Zn)	ug/L	<5.0	<5.0	5.0	2195498
RDL = Reportable Detecti	ion Limit				

QC Batch = Quality Control Batch

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					JE8471	JE8472		
Sampling Date					2021/05/18	2021/05/15		
COC Number					808542-01-01	808542-01-01		
	Units	Α	В	С	TSMC-82180	TSMC-82126	RDL	QC Batch
% MOISTURE	%	-	-	-	4.4	0.5	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/kg	200	400	2000	2.2	<1.0	1.0	2194926
Nitrates (N-NO3-) †	mg/kg	•	ı		<1.0	<1.0	1.0	2194933
Nitrites (N-NO2-) †	mg/kg		-		<0.20	0.21	0.20	2194933
Nitrate (N) and Nitrite(N)	mg/kg	•	-	-	<1.0	<1.0	1.0	2194933

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		JE8471	JE8472		JE8474	JE8475		
Sampling Date		2021/05/18	2021/05/15		2021/05/18	2021/05/15		
COC Number		808542-01-01	808542-01-01		808542-01-01	808542-01-01		
	Units	TSMC-82180	TSMC-82126	QC Batch	TSMC-82180-CTEU-9	TSMC-82126-CTEU-9	RDL	QC Batch
% MOISTURE	%	4.4	0.5	N/A	N/A	N/A	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	<1.0	2195510	<1.0	<1.0	1.0	2202570
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	2195514	<0.20	<0.20	0.20	2202571
Nitrate (N) and Nitrite(N)	mg/L	<0.20	<0.20	2195514	<0.20	<0.20	0.20	2202571

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		JE8477	JE8478								
Sampling Date		2021/05/18	2021/05/15								
COC Number		808542-01-01	808542-01-01								
	Units	TSMC-82180-(SPLP1312)	TSMC-82126-(SPLP1312)	RDL	QC Batch						
CONVENTIONALS											
Fluoride (F)	mg/L	<1.0	<1.0	1.0	2195480						
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	0.20	2195509						
Nitrate (N) and Nitrite(N)	mg/L	<0.20	0.20	0.20	2195509						
RDL = Reportable Detection Limit QC Batch = Quality Control Batch											

TCLP-EPA 1311 (SOIL)

Lab BV ID		JE8471	JE8472				
Sampling Date		2021/05/18	2021/05/15				
COC Number		808542-01-01	808542-01-01				
	Units	TSMC-82180	TSMC-82126	QC Batch			
% MOISTURE	%	4.4	0.5	N/A			
Leachates							
Weight of sample (g)	n/a	20.1	20.0	2194590			
pH of pre-test	n/a	<1.68	<1.68	2194590			
pH end of leaching	n/a	4.89	4.89	2194590			
Volume extracting fluid 1 (ml)	n/a	400	400	2194590			
QC Batch = Quality Control Batch N/A = Not Applicable							

Your P.O. #: 3000000997

SPLP-EPA 1312 (SOIL)

Lab BV ID		JE8477	JE8478				
Sampling Date		2021/05/18	2021/05/15				
COC Number		808542-01-01	808542-01-01				
	Units	TSMC-82180-(SPLP1312)	TSMC-82126-(SPLP1312)	QC Batch			
Leachates							
Weight of sample (g)	n/a	25.1	25.2	2194591			
Volume of extracting fluid (mL)	n/a	500	500	2194591			
pH after 18 hours leaching	n/a	5.79	5.68	2194591			
pH of extracting fluid	n/a	4.19	4.19	2194591			
QC Batch = Quality Control Batch							

Your P.O. #: 3000000997

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		JE8474	JE8475			
Sampling Date		2021/05/18	2021/05/15			
COC Number		808542-01-01	808542-01-01			
	Units	TSMC-82180-CTEU-9	TSMC-82126-CTEU-9	QC Batch		
Leachates						
Weight of sample (g)	n/a	40.2	40.1	2200110		
pH Deionized water	n/a	5.64	5.64	2200110		
Date extraction fluid added	n/a	2021/06/22	2021/06/22	2200110		
Date leaching terminated	n/a	2021/06/29	2021/06/29	2200110		
Volume of extracting fluid (mL)	n/a	160	160	2200110		
pH after 7 days of leaching	n/a	7.32	7.31	2200110		
QC Batch = Quality Control Batch						

Your P.O. #: 3000000997

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled " Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above.The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

TCLP-EPA 1311 (SOIL)

pH du pré-test: Veuillez noter que le résultat de l'échantillon est en dehors de la courbe de calibration (pH 4 - 10), et aussi dehors des limites de la linéarité (pH 1.68 - 13.0).

Results relate only to the items tested.

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2194590	SMD	Method Blank	pH end of leaching	2021/06/09	4.89		n/a
			Volume extracting fluid 1 (ml)	2021/06/09	400		n/a
2194591	SMD	Method Blank	Volume of extracting fluid (mL)	2021/06/09	500		n/a
			pH after 18 hours leaching	2021/06/09	4.25		n/a
			pH of extracting fluid	2021/06/09	4.19		n/a
2194823	RB2	Spiked Blank	Silver (Ag)	2021/06/09		96	%
			Arsenic (As)	2021/06/09		94	%
			Barium (Ba)	2021/06/09		101	%
			Boron (B)	2021/06/09		113	%
			Cadmium (Cd)	2021/06/09		97	%
			Chromium (Cr)	2021/06/09		97	%
			Copper (Cu)	2021/06/09		97	%
			Cobalt (Co)	2021/06/09		97	%
			Tin (Sn)	2021/06/09		99	%
			Iron (Fe)	2021/06/09		98	%
			Manganese (Mn)	2021/06/09		97	%
			Molybdenum (Mo)	2021/06/09		98	%
			Nickel (Ni)	2021/06/09		99	%
			Mercury (Hg)	2021/06/09		92	%
			Lead (Pb)	2021/06/09		96	%
			Selenium (Se)	2021/06/09		92	%
			Uranium (U)	2021/06/09		106	%
			Zinc (Zn)	2021/06/09		97	%
2194823	RB2	Method Blank	Silver (Ag)	2021/06/09	<0.50	37	mg/kį
2134023	NDZ	WELLIOU DIATIK	Arsenic (As)	2021/06/09	<2.0		mg/kg
			Barium (Ba)	2021/06/09	<4.0		mg/kg
			Boron (B)	2021/06/09	<2.0		mg/kg
			Cadmium (Cd)	2021/06/09	<0.10		
				2021/06/09	<1.0		mg/kg
			Chromium (Cr)				mg/kg
			Copper (Cu)	2021/06/09	<1.0		mg/kį
			Cobalt (Co)	2021/06/09	<1.0		mg/kg
			Tin (Sn)	2021/06/09	<1.0		mg/kį
			Iron (Fe)	2021/06/09	<10		mg/kg
			Manganese (Mn)	2021/06/09	<2.0		mg/k
			Molybdenum (Mo)	2021/06/09	<0.50		mg/k
			Nickel (Ni)	2021/06/09	<0.50		mg/k
			Mercury (Hg)	2021/06/09	<0.010		mg/k
			Lead (Pb)	2021/06/09	<1.0		mg/k
			Selenium (Se)	2021/06/09	<0.50		mg/kį
			Uranium (U)	2021/06/09	<2.0		mg/kį
			Zinc (Zn)	2021/06/09	<5.0		mg/k
2194926	SBD	Spiked Blank	Fluoride (F)	2021/06/10		105	%
2194926	SBD	Method Blank	Fluoride (F)	2021/06/10	<1.0		mg/k
2194933	ABT	Spiked Blank	Nitrates (N-NO3-)	2021/06/09		102	%
			Nitrites (N-NO2-)	2021/06/09		102	%
			Nitrate (N) and Nitrite(N)	2021/06/09		102	%
2194933	ABT	Method Blank	Nitrates (N-NO3-)	2021/06/09	<1.0		mg/k
			Nitrites (N-NO2-)	2021/06/09	<0.20		mg/k
			Nitrate (N) and Nitrite(N)	2021/06/09	<1.0		mg/k
195480	SBD	LEACH. BLANK	Fluoride (F)	2021/06/10	<1.0		mg/L
2195480	SBD	Spiked Blank	Fluoride (F)	2021/06/10	-	114	%
2195496	DZE	LEACH. BLANK	Silver (Ag)	2021/06/11	<0.30		ug/L

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
		ζο . γρο	Arsenic (As)	2021/06/11	<2.0		ug/L
			Barium (Ba)	2021/06/11	<5.0		ug/L
			Boron (B)	2021/06/11	<50		ug/L
			Cadmium (Cd)	2021/06/11	<1.0		ug/L
			Chromium (Cr)	2021/06/11	<7.0		ug/L
			Cobalt (Co)	2021/06/11	<10		ug/L
			Copper (Cu)	2021/06/11	32,		ug/L
					RDL=3.0		
			Tin (Sn)	2021/06/11	<50		ug/L
			Iron (Fe)	2021/06/11	<100		ug/L
			Manganese (Mn)	2021/06/11	<3.0		ug/L
			Mercury (Hg)	2021/06/11	<0.50		ug/L
			Molybdenum (Mo)	2021/06/11	<10		ug/L
			Nickel (Ni)	2021/06/11	<6.0		ug/L
			Lead (Pb)	2021/06/11	<1.0		ug/L
			Selenium (Se)	2021/06/11	<1.0		ug/L
			Uranium (U)	2021/06/11	<0.60		ug/L
			Zinc (Zn)	2021/06/11	<5.0		ug/L
2195496	DZE	Spiked Blank	Silver (Ag)	2021/06/11		100	%
			Arsenic (As)	2021/06/11		105	%
			Barium (Ba)	2021/06/11		104	%
			Boron (B)	2021/06/11		106	%
			Cadmium (Cd)	2021/06/11		104	%
			Chromium (Cr)	2021/06/11		98	%
			Cobalt (Co)	2021/06/11		94	%
			Copper (Cu)	2021/06/11		92	%
			Tin (Sn)	2021/06/11		113	%
			Iron (Fe)	2021/06/11		101	%
			Manganese (Mn)	2021/06/11		101	%
			Mercury (Hg)	2021/06/11		101	%
			Molybdenum (Mo)	2021/06/11		103	%
			Nickel (Ni)	2021/06/11		91	%
			Lead (Pb)	2021/06/11		97	%
			Selenium (Se)	2021/06/11		102	%
			Uranium (U)	2021/06/11		95	%
			Zinc (Zn)	2021/06/11		96	%
2195498	DZE	LEACH. BLANK	Silver (Ag)	2021/06/11	<0.30		ug/L
			Arsenic (As)	2021/06/11	<2.0		ug/L
			Barium (Ba)	2021/06/11	<5.0		ug/L
			Boron (B)	2021/06/11	<50		ug/L
			Cadmium (Cd)	2021/06/11	<1.0		ug/L
			Chromium (Cr)	2021/06/11	<7.0		ug/L
			Cobalt (Co)	2021/06/11	<10		ug/L ug/L
					3.6,		
			Copper (Cu)	2021/06/11	RDL=3.0		ug/L
			Tin (Sn)	2021/06/11	<50		ug/L
			Iron (Fe)	2021/06/11	<100		ug/L
			Manganese (Mn)	2021/06/11	<3.0		ug/L
			Mercury (Hg)	2021/06/11	<0.50		ug/L
			Molybdenum (Mo)	2021/06/11	<10		ug/L
			Nickel (Ni)	2021/06/11	<6.0		ug/L
			Lead (Pb)	2021/06/11	<1.0		ug/L

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
		ζο . , μο	Selenium (Se)	2021/06/11	<1.0		ug/L
			Uranium (U)	2021/06/11	<0.60		ug/L
			Zinc (Zn)	2021/06/11	<5.0		ug/L
2195498	DZE	Spiked Blank	Silver (Ag)	2021/06/11	.5.0	99	%
		op.med blaim	Arsenic (As)	2021/06/11		105	%
			Barium (Ba)	2021/06/11		102	%
			Boron (B)	2021/06/11		109	%
			Cadmium (Cd)	2021/06/11		102	%
			Chromium (Cr)	2021/06/11		84	%
			Cobalt (Co)	2021/06/11		94	%
			Copper (Cu)	2021/06/11		92	%
			Tin (Sn)	2021/06/11		110	%
			Iron (Fe)	2021/06/11		100	%
			Manganese (Mn)	2021/06/11		100	%
			Mercury (Hg)	2021/06/11		96	%
			Molybdenum (Mo)	2021/06/11		103	%
			Nickel (Ni)	2021/06/11		91	%
			Lead (Pb)	2021/06/11		91	%
			Selenium (Se)	2021/06/11		103	%
			Uranium (U)	2021/06/11		90	%
			Zinc (Zn)	2021/06/11		94	%
2195509	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/06/09	<0.20	3.	mg/L
2133303	100	EL/ (CH. DE/ (IVI)	Nitrate (N) and Nitrite(N)	2021/06/09	<0.20		mg/L
2195509	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/06/09	10.20	108	%
2133303		Spinea Dialin	Nitrate (N) and Nitrite(N)	2021/06/09		107	%
2195510	SBD	LEACH. BLANK	Fluoride (F)	2021/06/10	<1.0	107	mg/L
2195510	SBD	Spiked Blank	Fluoride (F)	2021/06/10	12.0	111	%
2195514	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/06/10	<0.20	111	mg/L
			Nitrate (N) and Nitrite(N)	2021/06/10	<0.20		mg/L
2195514	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/06/10	10.20	99	%
2133311	.00	Spined Blank	Nitrate (N) and Nitrite(N)	2021/06/10		96	%
2195514	TGU	Method Blank	Nitrites (N-NO2-)	2021/06/10	<0.020	30	mg/L
		memod blank	Nitrate (N) and Nitrite(N)	2021/06/10	<0.020		mg/L
2200110	SMD	Method Blank	pH Deionized water	2021/06/29	5.64		n/a
	0		Date extraction fluid added	2021/06/29	2021/06/22		n/a
			Date leaching terminated	2021/06/29	2021/06/29		n/a
			Volume of extracting fluid (mL)	2021/06/29	160		n/a
			pH after 7 days of leaching	2021/06/29	6.92		n/a
2202498	AT7	LEACH. BLANK	Silver (Ag)	2021/06/30	<0.30		ug/L
2202 150	, , , ,	EL TOTTI DE TITT	Arsenic (As)	2021/06/30	<2.0		ug/L
			Barium (Ba)	2021/06/30	<5.0		ug/L
			Boron (B)	2021/06/30	<50		ug/L
			Cadmium (Cd)	2021/06/30	<1.0		ug/L
			Chromium (Cr)	2021/06/30	<7.0		ug/L
			Cobalt (Co)	2021/06/30	<10		ug/L ug/L
			Copper (Cu)	2021/06/30	<3.0		ug/L
			Tin (Sn)	2021/06/30	<50		ug/L
			Iron (Fe)	2021/06/30	<100		ug/L ug/L
			Manganese (Mn)	2021/06/30	<3.0		ug/L ug/L
			Mercury (Hg)	2021/06/30	<0.50		ug/L ug/L
			Molybdenum (Mo)	2021/06/30	<10		ug/L ug/L
			Nickel (Ni)	2021/06/30	<6.0		ug/L ug/L

Report Date: 2021/08/10

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Lead (Pb)	2021/06/30	<1.0		ug/L
			Selenium (Se)	2021/06/30	<1.0		ug/L
			Uranium (U)	2021/06/30	<0.60		ug/L
			Zinc (Zn)	2021/06/30	<5.0		ug/L
2202498	AT7	Spiked Blank	Silver (Ag)	2021/06/30		96	%
			Arsenic (As)	2021/06/30		99	%
			Barium (Ba)	2021/06/30		96	%
			Boron (B)	2021/06/30		105	%
			Cadmium (Cd)	2021/06/30		99	%
			Chromium (Cr)	2021/06/30		86	%
i			Cobalt (Co)	2021/06/30		93	%
			Copper (Cu)	2021/06/30		92	%
i			Tin (Sn)	2021/06/30		105	%
ı			Iron (Fe)	2021/06/30		100	%
			Manganese (Mn)	2021/06/30		98	%
			Mercury (Hg)	2021/06/30		99	%
			Molybdenum (Mo)	2021/06/30		96	%
			Nickel (Ni)	2021/06/30		86	%
			Lead (Pb)	2021/06/30		94	%
			Selenium (Se)	2021/06/30		95	%
			Uranium (U)	2021/06/30		98	%
			Zinc (Zn)	2021/06/30		96	%
2202570	VPA	LEACH. BLANK	Fluoride (F)	2021/07/01	<1.0		mg/L
2202570	VPA	Spiked Blank	Fluoride (F)	2021/07/01		94	%
2202571	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/06/30	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/06/30	<0.20		mg/L
2202571	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/06/30		102	%
			Nitrate (N) and Nitrite(N)	2021/06/30		104	%

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Report Date: 2021/08/10

TATA STEEL MINERALS CANADA Client Project #: GOODWOOD-ARD

Your P.O. #: 3000000997

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Alex Thibert Alex Thibert, B.Sc., Chemist, Montréal, Analyst II, Chemist in Training

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

Michelina Cinquino, Analyst II

Shu Yang 2008-014

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: ARD

Site Location: GOODWOOD

Your C.O.C. #: N-A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/10/04

Report #: R2694764 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C135683 Received: 2021/07/15, 09:00

Sample Matrix: Soil # Samples Received: 15

# Jampies Neceiveu. 15					
Amahaaa	Ougustitus	Date	Date	Laboratori, Mathad	Amalustaal Masthaad
Analyses		Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	5	2021/10/04	N/A		
Grinding	5	N/A	2021/07/19	STL SOP-00019	N/A
Grinding	1	N/A	2021/07/22	STL SOP-00019	N/A
Fluoride (free)	5	2021/07/24	2021/07/28	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/07/28	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	14	N/A	2021/07/29	STL SOP-00038	SM 23 4500-F m
Mercury by ICP-MS	1	2021/07/15	2021/07/22	III-105 rév.10 03/09/25	MA.200-Mét. 1.2 R7
Mercury by ICP-MS	4	2021/07/15	2021/07/23	III-105 rév.10 03/09/25	MA.200-Mét. 1.2 R7
Water Leachate (CTEU - 9)	5	2021/07/20	2021/07/27	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	4	2021/07/21	2021/07/22	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	1	2021/07/23	2021/07/23	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	5	2021/07/23	2021/07/26	STL SOP-00069	MA.200-Mét. 1.2 R7
Metals - Leached	5	2021/07/23	2021/07/29	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	4	2021/07/23	2021/08/01	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	6	2021/07/27	2021/08/01	STL SOP-00062	MA.200-Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	10	N/A	2021/07/24	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	5	N/A	2021/07/29	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	5	2021/07/24	2021/07/27	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	5	2021/07/22	2021/07/23	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or

Your Project #: ARD

Site Location: GOODWOOD

Your C.O.C. #: N-A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/10/04

Report #: R2694764 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C135683

Received: 2021/07/15, 09:00

implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

 $Note: RPDs \ calculated \ using \ raw \ data. \ The \ rounding \ of final \ results \ may \ result \ in \ the \ apparent \ difference.$

(1) This test was performed by Bureau Veritas Burnaby, 4606 Canada Way, Burnaby, BC, V5G 1K5

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

E

Martine Lepage Project Manager and Account Manager 06 Oct 2021 09:19:43

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com

Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: ARD

Site Location: GOODWOOD

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					JJ9685	JJ9686	JJ9761	JJ9762	JJ9763		
Sampling Date					2021/07/04	2021/07/04	2021/07/04	2021/07/04	2021/07/04		
COC Number					N-A	N-A	N-A	N-A	N-A		
	Units	Α	В	С	TSMC-83077	TSMC-83075	TSMC-83076	TSMC-83285	TSMC-83284	RDL	QC Batch
% MOISTURE	%	-	-	-	0.7	1.8	0.4	0.2	5.9	N/A	N/A
METALS											
Silver (Ag)	mg/kg	2	20	40	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	2211834
Arsenic (As)	mg/kg	6	30	50	2.8	7.6	5.5	7.1	8.5	2.0	2211834
Barium (Ba)	mg/kg	340	500	2000	7.4	<4.0	4.4	6.2	<4.0	4.0	2211834
Boron (B)	mg/kg		1		3.1	<2.0	<2.0	<2.0	<2.0	2.0	2211834
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	2211834
Chromium (Cr)	mg/kg	100	250	800	6.3	<1.0	6.7	3.1	1.8	1.0	2211834
Copper (Cu)	mg/kg	50	100	500	7.9	6.5	5.7	4.1	8.3	1.0	2211834
Cobalt (Co)	mg/kg	25	50	300	3.8	3.7	1.8	2.4	6.0	1.0	2211834
Tin (Sn)	mg/kg	5	50	300	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2211834
Iron (Fe) †	mg/kg		1		160000	89000	180000	83000	140000	100	2211834
Manganese (Mn)	mg/kg	1000	1000	2200	760	1100	380	340	390	2.0	2211834
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	<0.50	<0.50	0.83	<0.50	0.50	2211834
Nickel (Ni)	mg/kg	50	100	500	5.2	2.8	3.7	1.1	1.0	0.50	2211834
Mercury (Hg)	mg/kg	0.2	2	10	0.037	0.020	0.018	0.065	0.13	0.010	2211834
Lead (Pb)	mg/kg	50	500	1000	3.4	<1.0	1.0	2.3	1.3	1.0	2211834
Selenium (Se)	mg/kg	1	3	10	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	2211834
Uranium (U) †	mg/kg	-	-		<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2211834
Zinc (Zn)	mg/kg	140	500	1500	20	<5.0	11	5.4	7.6	5.0	2211834

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JJ9685	JJ9685	JJ9686			JJ9687		
Sampling Date		2021/07/04	2021/07/04	2021/07/04			2021/07/04		
COC Number		N-A	N-A	N-A			N-A		
	Units	TSMC-83077	TSMC-83077 Lab-Dup	TSMC-83075	RDL	QC Batch	TSMC-83077-CTEU-9	RDL	QC Batch
% MOISTURE	%	0.7	0.7	1.8	N/A	N/A	N/A	N/A	N/A
METALS					•				
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	0.30	2211879	<0.30	0.30	2212914
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	2.0	2211879	<2.0	2.0	2212914
Barium (Ba)	ug/L	75	88	<5.0	5.0	2211879	<5.0	5.0	2212914
Boron (B)	ug/L	<50	<50	<50	50	2211879	<50	50	2212914
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	1.0	2211879	<1.0	1.0	2212914
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	7.0	2211879	<7.0	7.0	2212914
Cobalt (Co)	ug/L	<10	<10	<10	10	2211879	<10	10	2212914
Copper (Cu)	ug/L	<10 (1)	<10	<10	10	2211879	<3.0	3.0	2212914
Tin (Sn) †	ug/L	<50	<50	<50	50	2211879	<50	50	2212914
Iron (Fe)	ug/L	<100	<100	<100	100	2211879	<100	100	2212914
Manganese (Mn)	ug/L	180	180	92	3.0	2211879	150	3.0	2212914
Mercury (Hg)	ug/L	<0.50	<0.50	<0.50	0.50	2211879	<0.50	0.50	2212914
Molybdenum (Mo)	ug/L	<10	<10	<10	10	2211879	<10	10	2212914
Nickel (Ni)	ug/L	<6.0	14	<6.0	6.0	2211879	<6.0	6.0	2212914
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	1.0	2211879	<1.0	1.0	2212914
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	1.0	2211879	<1.0	1.0	2212914
Uranium (U)	ug/L	<0.60	<0.60	<0.60	0.60	2211879	<0.60	0.60	2212914
Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	5.0	2211879	<5.0	5.0	2212914

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

(1) The detection limit was raised due to instrumentation.

Client Project #: ARD

Site Location: GOODWOOD

METALS-LAB LEACHATE (SOIL)

LLDVID		110,500		110.000	110.000	Ι	
Lab BV ID		JJ9688		JJ9689	JJ9690		
Sampling Date		2021/07/04		2021/07/04	2021/07/04		
COC Number		N-A		N-A	N-A		
	Units	TSMC-83075-CTEU-9	QC Batch	TSMC-83077-(SPLP1312)	TSMC-83075-(SPLP1312)	RDL	QC Batch
METALS							
Silver (Ag) †	ug/L	<0.30	2212914	<0.30	<0.30	0.30	2211901
Arsenic (As)	ug/L	<2.0	2212914	<2.0	<2.0	2.0	2211901
Barium (Ba)	ug/L	5.3	2212914	<5.0	<5.0	5.0	2211901
Boron (B)	ug/L	<50	2212914	<50	<50	50	2211901
Cadmium (Cd)	ug/L	<1.0	2212914	<1.0	<1.0	1.0	2211901
Chromium (Cr)	ug/L	<7.0	2212914	<7.0	<7.0	7.0	2211901
Cobalt (Co)	ug/L	<10	2212914	<10	<10	10	2211901
Copper (Cu)	ug/L	<3.0	2212914	160	<3.0	3.0	2211901
Tin (Sn) †	ug/L	<50	2212914	<50	<50	50	2211901
Iron (Fe)	ug/L	<100	2212914	<100	<100	100	2211901
Manganese (Mn)	ug/L	13	2212914	28	46	3.0	2211901
Mercury (Hg)	ug/L	<0.50	2212914	<0.50	<0.50	0.50	2211901
Molybdenum (Mo)	ug/L	<10	2212914	<10	<10	10	2211901
Nickel (Ni)	ug/L	<6.0	2212914	<6.0	<6.0	6.0	2211901
Lead (Pb)	ug/L	<1.0	2212914	<1.0	<1.0	1.0	2211901
Selenium (Se)	ug/L	<1.0	2212914	<1.0	<1.0	1.0	2211901
Uranium (U)	ug/L	<0.60	2212914	<0.60	<0.60	0.60	2211901
Zinc (Zn)	ug/L	<5.0	2212914	<5.0	<5.0	5.0	2211901

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: ARD

Site Location: GOODWOOD

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JJ9761	JJ9762	JJ9763			JJ9765		
Sampling Date		2021/07/04	2021/07/04	2021/07/04			2021/07/04		
COC Number		N-A	N-A	N-A			N-A		
	Units	TSMC-83076	TSMC-83285	TSMC-83284	RDL	QC Batch	TSMC-83076-CTEU-9	RDL	QC Batch
% MOISTURE	%	0.4	0.2	5.9	N/A	N/A	N/A	N/A	N/A
METALS									
Silver (Ag) †	ug/L	<0.30	<0.30	<0.30	0.30	2211879	<0.30	0.30	2212914
Arsenic (As)	ug/L	<2.0	<2.0	<2.0	2.0	2211879	<2.0	2.0	2212914
Barium (Ba)	ug/L	54	17	6.5	5.0	2211879	<5.0	5.0	2212914
Boron (B)	ug/L	<50	<50	<50	50	2211879	<50	50	2212914
Cadmium (Cd)	ug/L	<1.0	<1.0	<1.0	1.0	2211879	<1.0	1.0	2212914
Chromium (Cr)	ug/L	<7.0	<7.0	<7.0	7.0	2211879	<7.0	7.0	2212914
Cobalt (Co)	ug/L	<10	12	<10	10	2211879	<10	10	2212914
Copper (Cu)	ug/L	<10	<10	<10	10	2211879	<3.0	3.0	2212914
Tin (Sn) †	ug/L	<50	<50	<50	50	2211879	<50	50	2212914
Iron (Fe)	ug/L	<100	65000	<100	100	2211879	<100	100	2212914
Manganese (Mn)	ug/L	270	1200	81	3.0	2211879	240	3.0	2212914
Mercury (Hg)	ug/L	<0.50	<0.50	<0.50	0.50	2211879	<0.50	0.50	2212914
Molybdenum (Mo)	ug/L	<10	<10	<10	10	2211879	<10	10	2212914
Nickel (Ni)	ug/L	<6.0	51	<6.0	6.0	2211879	<6.0	6.0	2212914
Lead (Pb)	ug/L	<1.0	<1.0	<1.0	1.0	2211879	<1.0	1.0	2212914
Selenium (Se)	ug/L	<1.0	<1.0	<1.0	1.0	2211879	<1.0	1.0	2212914
Uranium (U)	ug/L	<0.60	<0.60	<0.60	0.60	2211879	<0.60	0.60	2212914
Zinc (Zn)	ug/L	<5.0	<5.0	6.9	5.0	2211879	<5.0	5.0	2212914

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JJ9766	JJ9767		JJ9768		
Sampling Date		2021/07/04	2021/07/04		2021/07/04		
COC Number		N-A	N-A		N-A		
	Units	TSMC-83285-CTEU-9	TSMC-83284-CTEU-9	QC Batch	TSMC-83076-(SPLP1312)	RDL	QC Batch
METALS							
Silver (Ag) †	ug/L	<0.30	<0.30	2212914	<0.30	0.30	2211901
Arsenic (As)	ug/L	<2.0	<2.0	2212914	<2.0	2.0	2211901
Barium (Ba)	ug/L	8.4	<5.0	2212914	<5.0	5.0	2211901
Boron (B)	ug/L	200	<50	2212914	<50	50	2211901
Cadmium (Cd)	ug/L	<1.0	<1.0	2212914	<1.0	1.0	2211901
Chromium (Cr)	ug/L	<7.0	<7.0	2212914	<7.0	7.0	2211901
Cobalt (Co)	ug/L	<10	<10	2212914	<10	10	2211901
Copper (Cu)	ug/L	<3.0	<3.0	2212914	<3.0	3.0	2211901
Tin (Sn) †	ug/L	<50	<50	2212914	<50	50	2211901
Iron (Fe)	ug/L	180	<100	2212914	<100	100	2211901
Manganese (Mn)	ug/L	<3.0	72	2212914	31	3.0	2211901
Mercury (Hg)	ug/L	<0.50	<0.50	2212914	<0.50	0.50	2211901
Molybdenum (Mo)	ug/L	<10	<10	2212914	<10	10	2211901
Nickel (Ni)	ug/L	<6.0	<6.0	2212914	<6.0	6.0	2211901
Lead (Pb)	ug/L	<1.0	<1.0	2212914	<1.0	1.0	2211901
Selenium (Se)	ug/L	<1.0	<1.0	2212914	<1.0	1.0	2211901
Uranium (U)	ug/L	<0.60	<0.60	2212914	<0.60	0.60	2211901
Zinc (Zn)	ug/L	<5.0	<5.0	2212914	<5.0	5.0	2211901

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: ARD

Site Location: GOODWOOD

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JJ9769		JJ9770		
Sampling Date		2021/07/04		2021/07/04		
COC Number		N-A		N-A		
	Units	TSMC-83285-(SPLP1312)	QC Batch	TSMC-83284-(SPLP1312)	RDL	QC Batch
METALS						
Silver (Ag) †	ug/L	<0.30	2212666	<0.30	0.30	2211901
Arsenic (As)	ug/L	<2.0	2212666	<2.0	2.0	2211901
Barium (Ba)	ug/L	<5.0	2212666	<5.0	5.0	2211901
Boron (B)	ug/L	<50	2212666	<50	50	2211901
Cadmium (Cd)	ug/L	<1.0	2212666	<1.0	1.0	2211901
Chromium (Cr)	ug/L	<7.0	2212666	<7.0	7.0	2211901
Cobalt (Co)	ug/L	<10	2212666	<10	10	2211901
Copper (Cu)	ug/L	<3.0	2212666	<3.0	3.0	2211901
Tin (Sn) †	ug/L	<50	2212666	<50	50	2211901
Iron (Fe)	ug/L	<100	2212666	<100	100	2211901
Manganese (Mn)	ug/L	240	2212666	27	3.0	2211901
Mercury (Hg)	ug/L	<0.50	2212666	<0.50	0.50	2211901
Molybdenum (Mo)	ug/L	<10	2212666	<10	10	2211901
Nickel (Ni)	ug/L	<6.0	2212666	<6.0	6.0	2211901
Lead (Pb)	ug/L	<1.0	2212666	<1.0	1.0	2211901
Selenium (Se)	ug/L	<1.0	2212666	<1.0	1.0	2211901
Uranium (U)	ug/L	<0.60	2212666	<0.60	0.60	2211901
Zinc (Zn)	ug/L	<5.0	2212666	<5.0	5.0	2211901

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

[†] Parameter is not accreditable

Report Date: 2021/10/04

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					JJ9685	JJ9686	JJ9761	JJ9762	JJ9763		
Sampling Date					2021/07/04	2021/07/04	2021/07/04	2021/07/04	2021/07/04		
COC Number					N-A	N-A	N-A	N-A	N-A		
	Units	Α	В	С	TSMC-83077	TSMC-83075	TSMC-83076	TSMC-83285	TSMC-83284	RDL	QC Batch
% MOISTURE	%	-	-	-	0.7	1.8	0.4	0.2	5.9	N/A	N/A
CONVENTIONALS											
Fluoride (F)	mg/kg	200	400	2000	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2211933
Nitrates (N-NO3-) †	mg/kg	-	-		<1.0	1.1	<1.0	3.6	<1.0	1.0	2211934
Nitrites (N-NO2-) †	mg/kg	-	-		<0.20	<0.20	<0.20	<0.20	<0.20	0.20	2211934
Nitrate (N) and Nitrite(N)	mg/kg	-	-		<1.0	1.1	<1.0	3.6	<1.0	1.0	2211934

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		JJ9685	JJ9686		JJ9687	JJ9688					
Sampling Date		2021/07/04	2021/07/04		2021/07/04	2021/07/04					
COC Number		N-A	N-A		N-A	N-A					
	Units	TSMC-83077	TSMC-83075	QC Batch	TSMC-83077-CTEU-9	TSMC-83075-CTEU-9	RDL	QC Batch			
% MOISTURE	%	0.7	1.8	N/A	N/A	N/A	N/A	N/A			
CONVENTIONALS											
Fluoride (F)	mg/L	<1.0	<1.0	2211915	<1.0	<1.0	1.0	2212905			
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	2211897	<0.20	<0.20	0.20	2212904			
Nitrate (N) and Nitrite(N)	mg/L	<0.20	<0.20	2211897	0.22	0.47	0.20	2212904			
RDL = Reportable Detection L	RDL = Reportable Detection Limit										

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable	1
----------------------	---

Lab BV ID		JJ9689	JJ9690		JJ9761	JJ9762		
Sampling Date		2021/07/04	2021/07/04		2021/07/04	2021/07/04		
COC Number		N-A	N-A		N-A	N-A		
	Units	TSMC-83077-(SPLP1312)	TSMC-83075-(SPLP1312)	QC Batch	TSMC-83076	TSMC-83285	RDL	QC Batch
% MOISTURE	%	N/A	N/A	N/A	0.4	0.2	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	<1.0	2211360	<1.0	<1.0	1.0	2211915
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	2211352	<0.20	<0.20	0.20	2211897
Nitrate (N) and Nitrite(N)	mg/L	<0.20	0.24	2211352	<0.20	<0.20	0.20	2211897

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		JJ9763		JJ9765	JJ9766	JJ9767		
Sampling Date		2021/07/04		2021/07/04	2021/07/04	2021/07/04		
COC Number		N-A		N-A	N-A	N-A		
	Units	TSMC-83284	QC Batch	TSMC-83076-CTEU-9	TSMC-83285-CTEU-9	TSMC-83284-CTEU-9	RDL	QC Batch
% MOISTURE	%	5.9	N/A	N/A	N/A	N/A	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	2211915	<1.0	<1.0	<1.0	1.0	2212905
Nitrites (N-NO2-)	mg/L	<0.20	2211897	<0.20	<0.20	<0.20	0.20	2212904
Nitrate (N) and Nitrite(N)	mg/L	<0.20	2211897	<0.20	0.62	<0.20	0.20	2212904

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Report Date: 2021/10/04

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		JJ9768		JJ9769		JJ9770				
Sampling Date		2021/07/04		2021/07/04		2021/07/04				
COC Number		N-A		N-A		N-A				
	Units	TSMC-83076-(SPLP1312)	QC Batch	TSMC-83285-(SPLP1312)	QC Batch	TSMC-83284-(SPLP1312)	RDL	QC Batch		
CONVENTIONALS										
Fluoride (F)	mg/L	<1.0	2211360	<1.0	2211895	<1.0	1.0	2211360		
Nitrites (N-NO2-)	mg/L	<0.20	2211352	<0.20	2211894	<0.20	0.20	2211352		
Nitrate (N) and Nitrite(N)	mg/L	<0.20	2211352	0.30	2211894	<0.20	0.20	2211352		
RDL = Reportable Detection Limit										
QC Batch = Quality Control B	atch									

Client Project #: ARD

Site Location: GOODWOOD

TCLP-EPA 1311 (SOIL)

Lab BV ID		JJ9685	JJ9686	JJ9761	JJ9762	JJ9763	
Sampling Date		2021/07/04	2021/07/04	2021/07/04	2021/07/04	2021/07/04	
COC Number		N-A	N-A	N-A	N-A	N-A	
	Units	TSMC-83077	TSMC-83075	TSMC-83076	TSMC-83285	TSMC-83284	QC Batch
% MOISTURE	%	0.7	1.8	0.4	0.2	5.9	N/A
Leachates							
Weight of sample (g)	n/a	20.1	20.0	20.1	20.0	20.2	2211020
pH of pre-test	n/a	<1.68	<1.68	<1.68	<1.68	<1.68	2211020
pH end of leaching	n/a	4.85	4.57	4.56	4.36	4.49	2211020
Volume extracting fluid 1 (ml)	n/a	400	400	400	400	400	2211020
OC Batab - Quality Cantral Bata							

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD

Site Location: GOODWOOD

SPLP-EPA 1312 (SOIL)

Lab BV ID		JJ9689	JJ9690	JJ9768						
Sampling Date		2021/07/04	2021/07/04	2021/07/04						
COC Number		N-A	N-A	N-A						
	Units	TSMC-83077-(SPLP1312)	TSMC-83075-(SPLP1312)	TSMC-83076-(SPLP1312)	QC Batch					
Leachates										
Weight of sample (g)	n/a	25.1	25.1	25.0	2210754					
Volume of extracting fluid (mL)	n/a	500	500	500	2210754					
pH after 18 hours leaching	n/a	5.58	5.24	5.55	2210754					
pH of extracting fluid	n/a	4.22	4.22	4.22	2210754					
QC Batch = Quality Control Batch										

Lab BV ID		JJ9769		JJ9770										
Sampling Date		2021/07/04		2021/07/04										
COC Number		N-A		N-A										
	Units	TSMC-83285-(SPLP1312)	QC Batch	TSMC-83284-(SPLP1312)	QC Batch									
Leachates														
Weight of sample (g)	n/a	25.1	2211405	25.1	2210754									
Volume of extracting fluid (mL)	n/a	500	2211405	500	2210754									
pH after 18 hours leaching	n/a	6.55	2211405	5.74	2210754									
pH of extracting fluid	n/a	4.16	2211405	4.22	2210754									
QC Batch = Quality Control Batch					QC Batch = Quality Control Batch									

Client Project #: ARD

Site Location: GOODWOOD

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		JJ9687	JJ9688	JJ9765	JJ9766					
Sampling Date		2021/07/04	2021/07/04	2021/07/04	2021/07/04					
COC Number		N-A	N-A	N-A	N-A					
	Units	TSMC-83077-CTEU-9	TSMC-83075-CTEU-9	TSMC-83076-CTEU-9	TSMC-83285-CTEU-9	QC Batch				
Leachates										
Weight of sample (g)	n/a	40.2	40.1	40.0	40.2	2209907				
pH Deionized water	n/a	5.98	5.98	5.98	5.98	2209907				
Date extraction fluid added	n/a	2021/07/20	2021/07/20	2021/07/20	2021/07/20	2209907				
Date leaching terminated	n/a	2021/07/27	2021/07/27	2021/07/27	2021/07/27	2209907				
Volume of extracting fluid (mL)	n/a	160	160	160	160	2209907				
pH after 7 days of leaching	n/a	6.50	7.08	6.48	8.14	2209907				
QC Batch = Quality Control Batch)									

Lab BV ID		JJ9767	
Sampling Date		2021/07/04	
COC Number		N-A	
	Units	TSMC-83284-CTEU-9	QC Batch
Leachates			
Weight of sample (g)	n/a	40.1	2209907
pH Deionized water	n/a	5.98	2209907
Date extraction fluid added	n/a	2021/07/20	2209907
Date leaching terminated	n/a	2021/07/27	2209907
Volume of extracting fluid (mL)	n/a	160	2209907
pH after 7 days of leaching	n/a	6.91	2209907
QC Batch = Quality Control Batch	1		-

Client Project #: ARD

Site Location: GOODWOOD

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

TOTAL EXTRACTABLE METALS (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

TCLP-EPA 1311 (SOIL)

pH du pre-test: Veuillez noter que le résultat de l'échantillon (JJ9685, JJ9686, JJ9761, JJ9762, JJ9763) sont en dehors de la courbe de calibration, et certains d'entre eux aussi dehors des limites de la linéarité.

Results relate only to the items tested.

Report Date: 2021/10/04

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2209907	SMD	Method Blank	pH Deionized water	2021/07/27	5.98		n/a
			Date extraction fluid added	2021/07/27	2021/07/20		n/a
			Date leaching terminated	2021/07/27	2021/07/27		n/a
			Volume of extracting fluid (mL)	2021/07/27	160		n/a
			pH after 7 days of leaching	2021/07/27	6.77		n/a
2210754	SMD	Method Blank	Volume of extracting fluid (mL)	2021/07/22	500		n/a
			pH after 18 hours leaching	2021/07/22	4.22		n/a
			pH of extracting fluid	2021/07/22	4.22		n/a
2211020	SMD	Method Blank	pH end of leaching	2021/07/23	4.90/2.85		n/a
			Volume extracting fluid 1 (ml)	2021/07/23	400		n/a
2211352	ABT	LEACH. BLANK	Nitrites (N-NO2-)	2021/07/24	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/07/24	<0.20		mg/L
2211352	ABT	Spiked Blank	Nitrites (N-NO2-)	2021/07/24		98	%
			Nitrate (N) and Nitrite(N)	2021/07/24		98	%
2211360	YAZ	LEACH. BLANK	Fluoride (F)	2021/07/29	<1.0		mg/L
2211360	YAZ	Spiked Blank	Fluoride (F)	2021/07/29		101	%
2211405	SMD	Method Blank	Volume of extracting fluid (mL)	2021/07/23	500		n/a
			pH after 18 hours leaching	2021/07/23	4.15		n/a
			pH of extracting fluid	2021/07/23	4.16		n/a
2211834	CRI	Spiked Blank	Silver (Ag)	2021/07/26		104	%
			Arsenic (As)	2021/07/26		106	%
			Barium (Ba)	2021/07/26		110	%
			Boron (B)	2021/07/26		113	%
			Cadmium (Cd)	2021/07/26		106	%
			Chromium (Cr)	2021/07/26		112	%
			Copper (Cu)	2021/07/26		106	%
			Cobalt (Co)	2021/07/26		107	%
			Tin (Sn)	2021/07/26		113	%
			Iron (Fe)	2021/07/26		101	%
			Manganese (Mn)	2021/07/26		108	%
			Molybdenum (Mo)	2021/07/26		104	%
			Nickel (Ni)	2021/07/26		110	%
			Mercury (Hg)	2021/07/26		113	%
			Lead (Pb)	2021/07/26		108	%
			Selenium (Se)	2021/07/26		115	%
			Uranium (U)	2021/07/26		112	%
			Zinc (Zn)	2021/07/26		107	%
2211834	CRI	Method Blank	Silver (Ag)	2021/07/26	<0.50		mg/kg
			Arsenic (As)	2021/07/26	<2.0		mg/kg
			Barium (Ba)	2021/07/26	<4.0		mg/kg
			Boron (B)	2021/07/26	<2.0		mg/kg
			Cadmium (Cd)	2021/07/26	<0.10		mg/kg
			Chromium (Cr)	2021/07/26	<1.0		mg/kg
			Copper (Cu)	2021/07/26	<1.0		mg/kg
			Cobalt (Co)	2021/07/26	<1.0		mg/kg
			Tin (Sn)	2021/07/26	<1.0		mg/kg
			Iron (Fe)	2021/07/26	11,		mg/kg
				2001/27/25	RDL=10		
			Manganese (Mn)	2021/07/26	<2.0		mg/kg
			Molybdenum (Mo)	2021/07/26	<0.50		mg/kg
			Nickel (Ni)	2021/07/26	<0.50		mg/kg
			Mercury (Hg)	2021/07/26	<0.010		mg/kg

Report Date: 2021/10/04

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Lead (Pb)	2021/07/26	<1.0		mg/kg
			Selenium (Se)	2021/07/26	<0.50		mg/kg
			Uranium (U)	2021/07/26	<2.0		mg/kg
			Zinc (Zn)	2021/07/26	<5.0		mg/kg
2211879	ST5	LEACH. BLANK	Silver (Ag)	2021/07/29	<0.30		ug/L
			Arsenic (As)	2021/07/29	<2.0		ug/L
			Barium (Ba)	2021/07/29	<5.0		ug/L
			Boron (B)	2021/07/29	<50		ug/L
			Cadmium (Cd)	2021/07/29	<1.0		ug/L
			Chromium (Cr)	2021/07/29	<7.0		ug/L
			Cobalt (Co)	2021/07/29	<10		ug/L
			Copper (Cu)	2021/07/29	<10		ug/L
			Tin (Sn)	2021/07/29	<50		ug/L
			Iron (Fe)	2021/07/29	<100		ug/L
			Manganese (Mn)	2021/07/29	<3.0		ug/L
			Mercury (Hg)	2021/07/29	<0.50		ug/L
			Molybdenum (Mo)	2021/07/29	<10		ug/L
			Nickel (Ni)	2021/07/29	<6.0		ug/L
			Lead (Pb)	2021/07/29	<1.0		ug/L
			Selenium (Se)	2021/07/29	<1.0		ug/L
			Uranium (U)	2021/07/29	<0.60		ug/L
			Zinc (Zn)	2021/07/29	<5.0		ug/L
2211879	ST5	Spiked Blank	Silver (Ag)	2021/07/29		99	%
		- F	Arsenic (As)	2021/07/29		110	%
			Barium (Ba)	2021/07/29		107	%
			Boron (B)	2021/07/29		108	%
			Cadmium (Cd)	2021/07/29		105	%
			Chromium (Cr)	2021/07/29		101	%
			Cobalt (Co)	2021/07/29		106	%
			Copper (Cu)	2021/07/29		104	%
			Tin (Sn)	2021/07/29		118	%
			Iron (Fe)	2021/07/29		108	%
			Manganese (Mn)	2021/07/29		107	%
			-	2021/07/29		113	% %
			Mercury (Hg) Molybdenum (Mo)				
			, , ,	2021/07/29		108	%
			Nickel (Ni)	2021/07/29		107	%
			Lead (Pb)	2021/07/29		103	%
			Selenium (Se)	2021/07/29		108	%
			Uranium (U)	2021/07/29		97	%
			Zinc (Zn)	2021/07/29		118	%
2211894	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/07/24	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/07/24	<0.20		mg/L
2211894	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/07/24		96	%
			Nitrate (N) and Nitrite(N)	2021/07/24		97	%
2211895	ANB	LEACH. BLANK	Fluoride (F)	2021/07/28	<1.0		mg/L
2211895	ANB	Spiked Blank	Fluoride (F)	2021/07/28		114	%
2211897	ABT	LEACH. BLANK	Nitrites (N-NO2-)	2021/07/24	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/07/24	<0.20		mg/L
2211897	ABT	Spiked Blank	Nitrites (N-NO2-)	2021/07/24		96	%
			Nitrate (N) and Nitrite(N)	2021/07/24		100	%
2211901	AT7	LEACH. BLANK	Silver (Ag)	2021/08/01	<0.30		ug/L
			Arsenic (As)	2021/08/01	<2.0		ug/L

Client Project #: ARD
Site Location: GOODWOOD

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			QUALITY ASSURANCE RE	, ,			
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Barium (Ba)	2021/08/01	<5.0		ug/L
			Boron (B)	2021/08/01	<50		ug/L
			Cadmium (Cd)	2021/08/01	<1.0		ug/L
			Chromium (Cr)	2021/08/01	<7.0		ug/L
			Cobalt (Co)	2021/08/01	<10		ug/L
			Copper (Cu)	2021/08/01	5.0,		ug/L
					RDL=3.0		
			Tin (Sn)	2021/08/01	<50		ug/L
			Iron (Fe)	2021/08/01	<100		ug/L
			Manganese (Mn)	2021/08/01	<3.0		ug/L
			Mercury (Hg)	2021/08/01	<0.50		ug/L
			Molybdenum (Mo)	2021/08/01	<10		ug/L
			Nickel (Ni)	2021/08/01	<6.0		ug/L
			Lead (Pb)	2021/08/01	<1.0		ug/L
			Selenium (Se)	2021/08/01	<1.0		ug/L
			Uranium (U)	2021/08/01	<0.60		ug/L
			Zinc (Zn)	2021/08/01	<5.0		ug/L
2211901	AT7	Spiked Blank	Silver (Ag)	2021/08/01		95	%
			Arsenic (As)	2021/08/01		96	%
			Barium (Ba)	2021/08/01		84	%
			Boron (B)	2021/08/01		106	%
			Cadmium (Cd)	2021/08/01		105	%
			Chromium (Cr)	2021/08/01		97	%
			Cobalt (Co)	2021/08/01		100	%
			Copper (Cu)	2021/08/01		99	%
			Tin (Sn)	2021/08/01		114	%
			Iron (Fe)	2021/08/01		116	%
			Manganese (Mn)	2021/08/01		108	%
			Mercury (Hg)	2021/08/01		122 (1)	%
			Molybdenum (Mo)	2021/08/01		100	%
			Nickel (Ni)	2021/08/01		107	%
			Lead (Pb)	2021/08/01		118	%
			Selenium (Se)	2021/08/01		97	%
			Uranium (U)	2021/08/01		134 (1)	%
			Zinc (Zn)	2021/08/01		104	%
2211915	YAZ	LEACH. BLANK	Fluoride (F)	2021/03/01	<1.0	104	mg/L
2211915	YAZ	Spiked Blank	Fluoride (F)	2021/07/29	11.0	101	/// // %
2211913	ANB	Spiked Blank	Fluoride (F)	2021/07/28		103	%
2211933	ANB	Method Blank	Fluoride (F)	2021/07/28	<1.0	103	mg/kg
2211933	TGU	Spiked Blank	Nitrates (N-NO3-)	2021/07/28	\1.0	98	///g/ kg %
2211334	100	Spikeu bialik	Nitrites (N-NO2-)	2021/07/27		97	%
			Nitrate (N) and Nitrite(N)	2021/07/27		97	%
2211024	TCII	Mothed Blank	, , , , , ,	2021/07/27	-1.0	37	
2211934	TGU	Method Blank	Nitrates (N-NO3-)	· ·	<1.0		mg/kg
			Nitrites (N-NO2-)	2021/07/27	<0.20		mg/kg
2212666	A T 7	LEACH DIANU	Nitrate (N) and Nitrite(N)	2021/07/27	<1.0		mg/kg
2212666	AT7	LEACH. BLANK	Silver (Ag)	2021/08/01	<0.30		ug/L
			Arsenic (As)	2021/08/01	<2.0		ug/L
			Barium (Ba)	2021/08/01	<5.0		ug/L
			Boron (B)	2021/08/01	<50		ug/L
			Cadmium (Cd)	2021/08/01	<1.0		ug/L
			Chromium (Cr)	2021/08/01	<7.0		ug/L
			Cobalt (Co)	2021/08/01	<10		ug/L

Report Date: 2021/10/04

TATA STEEL MINERALS CANADA

Client Project #: ARD

Site Location: GOODWOOD

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Copper (Cu)	2021/08/01	5.0,		ug/L
					RDL=3.0		
			Tin (Sn)	2021/08/01	<50		ug/L
			Iron (Fe)	2021/08/01	<100		ug/L
			Manganese (Mn)	2021/08/01	<3.0		ug/L
			Mercury (Hg)	2021/08/01	<0.50		ug/L
			Molybdenum (Mo)	2021/08/01	<10		ug/L
			Nickel (Ni)	2021/08/01	<6.0		ug/L
			Lead (Pb)	2021/08/01	<1.0		ug/L
			Selenium (Se)	2021/08/01	<1.0		ug/L
			Uranium (U)	2021/08/01	<0.60		ug/L
			Zinc (Zn)	2021/08/01	<5.0		ug/L
2212666	AT7	Spiked Blank	Silver (Ag)	2021/08/01		103	%
			Arsenic (As)	2021/08/01		105	%
			Barium (Ba)	2021/08/01		89	%
			Boron (B)	2021/08/01		111	%
			Cadmium (Cd)	2021/08/01		108	%
			Chromium (Cr)	2021/08/01		108	%
			Cobalt (Co)	2021/08/01		108	%
			Copper (Cu)	2021/08/01		107	%
			Tin (Sn)	2021/08/01		124 (1)	%
			Iron (Fe)	2021/08/01		124 (1)	%
			Manganese (Mn)	2021/08/01		119	%
			Mercury (Hg)	2021/08/01		126 (1)	%
			Molybdenum (Mo)	2021/08/01		104	%
			Nickel (Ni)	2021/08/01		107	%
			Lead (Pb)	2021/08/01		124 (1)	%
			Selenium (Se)	2021/08/01		106	%
			Uranium (U)	2021/08/01		140 (1)	%
			Zinc (Zn)	2021/08/01		110	%
2212904	TGU	LEACH. BLANK	Nitrites (N-NO2-)	2021/07/29	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/07/29	<0.20		mg/L
2212904	TGU	Spiked Blank	Nitrites (N-NO2-)	2021/07/29		97	%
			Nitrate (N) and Nitrite(N)	2021/07/29		97	%
2212905	YAZ	LEACH. BLANK	Fluoride (F)	2021/07/29	<1.0		mg/L
2212905	YAZ	Spiked Blank	Fluoride (F)	2021/07/29		106	%
2212914	AT7	LEACH. BLANK	Silver (Ag)	2021/08/01	<0.30		ug/L
			Arsenic (As)	2021/08/01	<2.0		ug/L
			Barium (Ba)	2021/08/01	<5.0		ug/L
			Boron (B)	2021/08/01	<50		ug/L
			Cadmium (Cd)	2021/08/01	<1.0		ug/L
			Chromium (Cr)	2021/08/01	<7.0		ug/L
			Cobalt (Co)	2021/08/01	<10		ug/L
			Copper (Cu)	2021/08/01	<3.0		ug/L
			Tin (Sn)	2021/08/01	<50		ug/L
			Iron (Fe)	2021/08/01	<100		ug/L
			Manganese (Mn)	2021/08/01	<3.0		ug/L
			Mercury (Hg)	2021/08/01	<0.50		ug/L
			Molybdenum (Mo)	2021/08/01	<10		ug/L
			Nickel (Ni)	2021/08/01	<6.0		ug/L
			Lead (Pb)	2021/08/01	<1.0		ug/L
			Selenium (Se)	2021/08/01	<1.0		ug/L

Client Project #: ARD

Site Location: GOODWOOD

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Uranium (U)	2021/08/01	<0.60		ug/L
			Zinc (Zn)	2021/08/01	<5.0		ug/L
2212914	AT7	Spiked Blank	Silver (Ag)	2021/08/04		101	%
			Arsenic (As)	2021/08/04		103	%
			Barium (Ba)	2021/08/04		101	%
			Boron (B)	2021/08/04		101	%
			Cadmium (Cd)	2021/08/04		99	%
			Chromium (Cr)	2021/08/04		97	%
			Cobalt (Co)	2021/08/04		98	%
			Copper (Cu)	2021/08/04		97	%
			Tin (Sn)	2021/08/04		109	%
			Iron (Fe)	2021/08/04		102	%
			Manganese (Mn)	2021/08/04		103	%
			Mercury (Hg)	2021/08/04		99	%
			Molybdenum (Mo)	2021/08/04		99	%
			Nickel (Ni)	2021/08/04		99	%
			Lead (Pb)	2021/08/04		97	%
			Selenium (Se)	2021/08/04		98	%
			Uranium (U)	2021/08/04		98	%
			Zinc (Zn)	2021/08/04		97	%

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

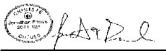
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

Client Project #: ARD

Site Location: GOODWOOD

VALIDATION SIGNATURE PAGE


The analytical data and all QC contained in this report were reviewed and validated by:

Frederic Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Jonathan Fauvel, B.Sc., Chemist, Montreal, Manager of Inorganics

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997 Your Project #: ARD Site Location: DS04 Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/12/29

Report #: R2724690 Version: 1 - Final

CERTIFICATE OF ANALYSIS

<u>LAB BV JOB #: C150724</u> Received: 2021/09/22, 16:45

Sample Matrix: Rock # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Grinding	1	N/A	2021/10/13	STL SOP-00019	N/A
Fluoride (free)	1	2021/10/02	2021/10/04	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/09/30	STL SOP-00038	SM 23 4500-F m
Mercury by ICP-MS	1	2021/09/23	2021/09/28	III-105 rév.10 03/09/25	MA.200–Mét. 1.2 R7
Total Extractable Metals (low level)	1	2021/09/28	2021/09/30	STL SOP-00069	MA.200–Mét. 1.2 R7
Metals - Leached	1	2021/09/28	2021/09/29	STL SOP-00062	MA.200–Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	1	N/A	2021/09/30	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	1	2021/10/02	2021/10/03	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	1	2021/09/27	2021/09/28	STL SOP-00024	MA100-Lixcom1.1 R1 m

Sample Matrix: Soil # Samples Received: 11

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	4	2021/12/20	N/A		
Grinding	4	N/A	2021/09/27	STL SOP-00019	N/A
Fluoride (free)	3	2021/10/02	2021/10/04	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	4	N/A	2021/10/07	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	7	N/A	2021/09/30	STL SOP-00038	SM 23 4500-F m
Mercury by ICP-MS	3	2021/09/23	2021/09/28	III-105 rév.10 03/09/25	MA.200–Mét. 1.2 R7
Water Leachate (CTEU - 9)	4	2021/09/29	2021/10/06	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	4	2021/09/27	2021/09/28	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	3	2021/09/28	2021/09/30	STL SOP-00069	MA.200–Mét. 1.2 R7
Metals - Leached	3	2021/10/07	2021/10/07	STL SOP-00062	MA.200–Mét. 1.2 R7
Metals - Leached	1	2021/10/07	2021/10/08	STL SOP-00062	MA.200–Mét. 1.2 R7
Metals - Leached	7	2021/09/28	2021/09/29	STL SOP-00062	MA.200–Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	4	N/A	2021/10/01	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	4	N/A	2021/10/08	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	3	N/A	2021/09/30	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	3	2021/10/02	2021/10/03	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	3	2021/09/27	2021/09/28	STL SOP-00024	MA100-Lixcom1.1 R1 m

Your P.O. #: 3000000997 Your Project #: ARD Site Location: DS04 Your C.O.C. #: N/A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2021/12/29

Report #: R2724690 Version: 1 - Final

CERTIFICATE OF ANALYSIS

LAB BV JOB #: C150724 Received: 2021/09/22, 16:45

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

 $Note: RPDs \ calculated \ using \ raw \ data. \ The \ rounding \ of final \ results \ may \ result \ in \ the \ apparent \ difference.$

(1) This test was performed by Bureau Veritas - ARD Receiving, 200-11620 Horseshoe Way, Richmond, BC, V7A 4V5

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Martine Lepage Project Manager and Account Manager 25 Jan 2022 16:46:29

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com Phone# (418)543-3788 Ext:7066201

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

TOTAL EXTRACTABLE METALS (ROCK)

Lab BV ID					JS3043		
Sampling Date					2021/09/10		
	Units	Α	В	С	TSMC-78147	RDL	QC Batch
METALS							
Silver (Ag)	mg/kg	2	20	40	<0.50	0.50	2234493
Arsenic (As)	mg/kg	6	30	50	3.2	2.0	2234493
Barium (Ba)	mg/kg	340	500	2000	<4.0	4.0	2234493
Boron (B)	mg/kg	•	1		2.8	2.0	2234493
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	0.10	2234493
Chromium (Cr)	mg/kg	100	250	800	1.1	1.0	2234493
Copper (Cu)	mg/kg	50	100	500	<1.0	1.0	2234493
Cobalt (Co)	mg/kg	25	50	300	<1.0	1.0	2234493
Tin (Sn)	mg/kg	5	50	300	<1.0	1.0	2234493
Iron (Fe) †	mg/kg	-	-		47000	10	2234493
Manganese (Mn)	mg/kg	1000	1000	2200	160	2.0	2234493
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	0.50	2234493
Nickel (Ni)	mg/kg	50	100	500	0.88	0.50	2234493
Mercury (Hg)	mg/kg	0.2	2	10	0.015	0.010	2234493
Lead (Pb)	mg/kg	50	500	1000	1.4	1.0	2234493
Selenium (Se)	mg/kg	1	3	10	<0.50	0.50	2234493
Uranium (U) †	mg/kg	-	-		<2.0	2.0	2234493
Zinc (Zn)	mg/kg	140	500	1500	<5.0	5.0	2234493

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

METALS-LAB LEACHATE (ROCK)

Lab BV ID		JS3043							
Sampling Date		2021/09/10							
	Units	TSMC-78147	RDL	QC Batch					
METALS									
Silver (Ag) †	ug/L	<0.30	0.30	2234616					
Arsenic (As)	ug/L	<2.0	2.0	2234616					
Barium (Ba)	ug/L	7.7	5.0	2234616					
Boron (B)	ug/L	<50	50	2234616					
Cadmium (Cd)	ug/L	<1.0	1.0	2234616					
Chromium (Cr)	ug/L	<7.0	7.0	2234616					
Cobalt (Co)	ug/L	<10	10	2234616					
Copper (Cu)	ug/L	<3.0	3.0	2234616					
Tin (Sn) †	ug/L	<50	50	2234616					
Iron (Fe)	ug/L	430	100	2234616					
Manganese (Mn)	ug/L	56	3.0	2234616					
Mercury (Hg)	ug/L	<0.50	0.50	2234616					
Molybdenum (Mo)	ug/L	<10	10	2234616					
Nickel (Ni)	ug/L	<6.0	6.0	2234616					
Lead (Pb)	ug/L	2.7	1.0	2234616					
Selenium (Se)	ug/L	<1.0	1.0	2234616					
Uranium (U)	ug/L	<0.60	0.60	2234616					
Zinc (Zn)	ug/L	29	5.0	2234616					
DDI Danamahla Datast	in a limaia								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: ARD Site Location: DS04 Your P.O. #: 3000000997

CONVENTIONAL PARAMETERS (ROCK)

				JS3043					
				2021/09/10					
Units	Α	В	С	TSMC-78147	RDL	QC Batch			
mg/kg	200	400	2000	1.7	1.0	2236380			
mg/kg	-	-		2.2	1.0	2236382			
mg/kg	•	-		<0.20	0.20	2236382			
Nitrate (N) and Nitrite(N)									
RDL = Reportable Detection Limit									
atch									
	mg/kg mg/kg mg/kg mg/kg imit	mg/kg 200 mg/kg - mg/kg - mg/kg - imit	mg/kg 200 400 mg/kg mg/kg mg/kg imit	mg/kg 200 400 2000 mg/kg mg/kg mg/kg imit	Image: bold of the control o	Marcon M			

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

CONVENTIONAL PARAMETERS-LAB LEACHATE (ROCK)

Lab BV ID		JS3043							
Sampling Date		2021/09/10							
	Units	TSMC-78147	RDL	QC Batch					
CONVENTIONALS									
Fluoride (F)	mg/L	<1.0	1.0	2235603					
Nitrites (N-NO2-)	mg/L	<0.20	0.20	2235402					
Nitrate (N) and Nitrite(N) mg/L <0.20 0.20 2235402									
RDL = Reportable Detection Limit									
QC Batch = Quality Control B	atch								

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

TCLP-EPA 1311 (ROCK)

Lab BV ID		JS3043	
Sampling Date		2021/09/10	
	Units	TSMC-78147	QC Batch
Leachates			
Weight of sample (g)	n/a	20.1	2234067
pH of pre-test	n/a	<1.68	2234067
pH end of leaching	n/a	4.90	2234067
Volume extracting fluid 1 (ml)	n/a	400	2234067
QC Batch = Quality Control Batc	ch		•

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

TOTAL EXTRACTABLE METALS (SOIL)

Lab BV ID					JS3044	JS3050	JS3051				
Sampling Date					2021/09/10	2021/09/10	2021/09/10				
	Units	Α	В	С	TSMC-84452	TSMC-83284	TSMC-84553	RDL	QC Batch		
% MOISTURE	%	-	-	-	3.1	2.1	8.8	N/A	N/A		
METALS	METALS										
Silver (Ag)	mg/kg	2	20	40	<0.50	<0.50	<0.50	0.50	2234493		
Arsenic (As)	mg/kg	6	30	50	7.1	14	3.0	2.0	2234493		
Barium (Ba)	mg/kg	340	500	2000	<4.0	<4.0	63	4.0	2234493		
Boron (B)	mg/kg	-	-		<2.0	<2.0	<2.0	2.0	2234493		
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	<0.10	<0.10	0.10	2234493		
Chromium (Cr)	mg/kg	100	250	800	1.3	<1.0	4.3	1.0	2234493		
Copper (Cu)	mg/kg	50	100	500	2.6	3.4	3.3	1.0	2234493		
Cobalt (Co)	mg/kg	25	50	300	4.1	14	2.8	1.0	2234493		
Tin (Sn)	mg/kg	5	50	300	<1.0	<1.0	<1.0	1.0	2234493		
Iron (Fe) †	mg/kg	-	-		130000	97000	200000	100	2234493		
Manganese (Mn)	mg/kg	1000	1000	2200	490	510	930	2.0	2234493		
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	<0.50	<0.50	0.50	2234493		
Nickel (Ni)	mg/kg	50	100	500	1.6	1.0	1.6	0.50	2234493		
Mercury (Hg)	mg/kg	0.2	2	10	<0.010	0.033	0.054	0.010	2234493		
Lead (Pb)	mg/kg	50	500	1000	<1.0	1.8	1.1	1.0	2234493		
Selenium (Se)	mg/kg	1	3	10	<0.50	<0.50	<0.50	0.50	2234493		
Uranium (U) †	mg/kg	-	-		<2.0	<2.0	<2.0	2.0	2234493		
Zinc (Zn)	mg/kg	140	500	1500	5.7	5.2	7.4	5.0	2234493		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JS3044		JS3046	JS3047		
Sampling Date		2021/09/10		2021/09/10	2021/09/10		
	Units	TSMC-84452	QC Batch	TSMC-78147-CTEU-9	TSMC-84452-CTEU-9	RDL	QC Batch
% MOISTURE	%	3.1	N/A	N/A	N/A	N/A	N/A
METALS							
Silver (Ag) †	ug/L	<0.30	2234616	<0.30	<0.30	0.30	2237970
Arsenic (As)	ug/L	<2.0	2234616	<2.0	<2.0	2.0	2237970
Barium (Ba)	ug/L	9.1	2234616	13	5.9	5.0	2237970
Boron (B)	ug/L	<50	2234616	62	<50	50	2237970
Cadmium (Cd)	ug/L	<1.0	2234616	<1.0	<1.0	1.0	2237970
Chromium (Cr)	ug/L	<7.0	2234616	<7.0	<7.0	7.0	2237970
Cobalt (Co)	ug/L	<10	2234616	<10	<10	10	2237970
Copper (Cu)	ug/L	<3.0	2234616	<3.0	<3.0	3.0	2237970
Tin (Sn) †	ug/L	<50	2234616	<50	<50	50	2237970
Iron (Fe)	ug/L	<100	2234616	15000	410	100	2237970
Manganese (Mn)	ug/L	82	2234616	140	11	3.0	2237970
Mercury (Hg)	ug/L	<0.50	2234616	<0.50	<0.50	0.50	2237970
Molybdenum (Mo)	ug/L	<10	2234616	<10	<10	10	2237970
Nickel (Ni)	ug/L	<6.0	2234616	<6.0	<6.0	6.0	2237970
Lead (Pb)	ug/L	<1.0	2234616	2.6	<1.0	1.0	2237970
Selenium (Se)	ug/L	<1.0	2234616	<1.0	<1.0	1.0	2237970
Uranium (U)	ug/L	<0.60	2234616	<0.60	<0.60	0.60	2237970
Zinc (Zn)	ug/L	<5.0	2234616	5.3	<5.0	5.0	2237970

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JS3048	JS3049		JS3050	JS3051		
Sampling Date		2021/09/10	2021/09/10		2021/09/10	2021/09/10		
	Units	TSMC-78147-(SPLP1312)	TSMC-84452-(SPLP1312)	QC Batch	TSMC-83284	TSMC-84553	RDL	QC Batch
% MOISTURE	%	N/A	N/A	N/A	2.1	8.8	N/A	N/A
METALS								
Silver (Ag) †	ug/L	<0.30	<0.30	2234625	<0.30	<0.30	0.30	2234616
Arsenic (As)	ug/L	<2.0	<2.0	2234625	<2.0	<2.0	2.0	2234616
Barium (Ba)	ug/L	N/A	N/A	N/A	28	81	5.0	2234616
Boron (B)	ug/L	<50	<50	2234625	<50	<50	50	2234616
Cadmium (Cd)	ug/L	<1.0	<1.0	2234625	<1.0	<1.0	1.0	2234616
Chromium (Cr)	ug/L	<7.0	<7.0	2234625	<7.0	<7.0	7.0	2234616
Cobalt (Co)	ug/L	<10	<10	2234625	<10	<10	10	2234616
Copper (Cu)	ug/L	<3.0	<3.0	2234625	<3.0	<3.0	3.0	2234616
Tin (Sn) †	ug/L	<50	<50	2234625	<50	<50	50	2234616
Iron (Fe)	ug/L	<100	<100	2234625	<100	<100	100	2234616
Manganese (Mn)	ug/L	<3.0	35	2234625	100	1500	3.0	2234616
Mercury (Hg)	ug/L	<0.50	<0.50	2234625	<0.50	<0.50	0.50	2234616
Molybdenum (Mo)	ug/L	<10	<10	2234625	<10	<10	10	2234616
Nickel (Ni)	ug/L	<6.0	<6.0	2234625	<6.0	<6.0	6.0	2234616
Lead (Pb)	ug/L	<1.0	<1.0	2234625	<1.0	<1.0	1.0	2234616
Selenium (Se)	ug/L	<1.0	<1.0	2234625	<1.0	<1.0	1.0	2234616
Uranium (U)	ug/L	<0.60	<0.60	2234625	<0.60	<0.60	0.60	2234616
Zinc (Zn)	ug/L	<5.0	<5.0	2234625	<5.0	<5.0	5.0	2234616

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD Site Location: DS04 Your P.O. #: 3000000997

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JS3053	JS3054		JS3056			
Sampling Date		2021/09/10	2021/09/10		2021/09/10			
	Units	TSMC-83284-CTEU-9	TSMC-84553-CTEU-9	QC Batch	TSMC-83284-(SPLP1312)	RDL	QC Batch	
METALS								
Silver (Ag) †	ug/L	<0.30	<0.30	2237970	<0.30	0.30	2234625	
Arsenic (As)	ug/L	<2.0	<2.0	2237970	<2.0	2.0	2234625	
Barium (Ba)	ug/L	<5.0	79	2237970	N/A	5.0	N/A	
Boron (B)	ug/L	140	<50	2237970	<50	50	2234625	
Cadmium (Cd)	ug/L	<1.0	<1.0	2237970	<1.0	1.0	2234625	
Chromium (Cr)	ug/L	<7.0	<7.0	2237970	<7.0	7.0	2234625	
Cobalt (Co)	ug/L	<10	<10	2237970	<10	10	2234625	
Copper (Cu)	ug/L	<3.0	<3.0	2237970	<3.0	3.0	2234625	
Tin (Sn) †	ug/L	<50	<50	2237970	<50	50	2234625	
Iron (Fe)	ug/L	<100	<100	2237970	<100	100	2234625	
Manganese (Mn)	ug/L	380	280	2237970	14	3.0	2234625	
Mercury (Hg)	ug/L	<0.50	<0.50	2237970	<0.50	0.50	2234625	
Molybdenum (Mo)	ug/L	<10	<10	2237970	<10	10	2234625	
Nickel (Ni)	ug/L	<6.0	<6.0	2237970	<6.0	6.0	2234625	
Lead (Pb)	ug/L	<1.0	<1.0	2237970	<1.0	1.0	2234625	
Selenium (Se)	ug/L	<1.0	<1.0	2237970	<1.0	1.0	2234625	
Uranium (U)	ug/L	<0.60	<0.60	2237970	<0.60	0.60	2234625	
Zinc (Zn)	ug/L	<5.0	<5.0	2237970	<5.0	5.0	2234625	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accreditable

N/A = Not Applicable

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

METALS-LAB LEACHATE (SOIL)

Lab BV ID		JS3057								
Sampling Date		2021/09/10								
	Units	TSMC-84553-(SPLP1312)	RDL	QC Batch						
METALS										
Silver (Ag) †	ug/L	<0.30	0.30	2234625						
Arsenic (As)	ug/L	<2.0	2.0	2234625						
Boron (B)	ug/L	<50	50	2234625						
Cadmium (Cd)	ug/L	<1.0	1.0	2234625						
Chromium (Cr)	ug/L	<7.0	7.0	2234625						
Cobalt (Co)	ug/L	<10	10	2234625						
Copper (Cu)	ug/L	<3.0	3.0	2234625						
Tin (Sn) †	ug/L	<50	50	2234625						
Iron (Fe)	ug/L	<100	100	2234625						
Manganese (Mn)	ug/L	24	3.0	2234625						
Mercury (Hg)	ug/L	<0.50	0.50	2234625						
Molybdenum (Mo)	ug/L	<10	10	2234625						
Nickel (Ni)	ug/L	<6.0	6.0	2234625						
Lead (Pb)	ug/L	<1.0	1.0	2234625						
Selenium (Se)	ug/L	<1.0	1.0	2234625						
Uranium (U)	ug/L	<0.60	0.60	2234625						
Zinc (Zn) ug/L <5.0 5.0 2234625										
RDL = Reportable Detection L	RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch										
† Parameter is not accreditab	le									

Client Project #: ARD Site Location: DS04 Your P.O. #: 3000000997

CONVENTIONAL PARAMETERS (SOIL)

Lab BV ID					JS3044	JS3050	JS3051		
Sampling Date					2021/09/10	2021/09/10	2021/09/10		
	Units	Α	В	С	TSMC-84452	TSMC-83284	TSMC-84553	RDL	QC Batch
% MOISTURE	%	-	-	-	3.1	2.1	8.8	N/A	N/A
CONVENTIONALS									
Fluoride (F)	mg/kg	200	400	2000	<1.0	<1.0	<1.0	1.0	2236380
Nitrates (N-NO3-) †	mg/kg	•	1		<1.0	<1.0	2.6	1.0	2236382
Nitrites (N-NO2-) †	mg/kg	•	-		<0.20	<0.20	<0.20	0.20	2236382
Nitrate (N) and Nitrite(N)	mg/kg	•	1		<1.0	<1.0	2.6	1.0	2236382

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Lab BV ID		JS3044		JS3046	JS3047					
Sampling Date		2021/09/10		2021/09/10	2021/09/10					
	Units	TSMC-84452	QC Batch	TSMC-78147-CTEU-9	TSMC-84452-CTEU-9	RDL	QC Batch			
% MOISTURE	%	3.1	N/A	N/A	N/A	N/A	N/A			
CONVENTIONALS	CONVENTIONALS									
Fluoride (F)	mg/L	<1.0	2235603	<1.0	<1.0	1.0	2238123			
Nitrites (N-NO2-)	mg/L	<0.20	2235402	<0.20	<0.20	0.20	2238114			
Nitrate (N) and Nitrite(N)	mg/L	<0.20	2235402	0.33	<0.20	0.20	2238114			

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		JS3048	JS3049		JS3050	JS3051		
Sampling Date		2021/09/10	2021/09/10		2021/09/10	2021/09/10		
	Units	TSMC-78147-(SPLP1312)	TSMC-84452-(SPLP1312)	QC Batch	TSMC-83284	TSMC-84553	RDL	QC Batch
% MOISTURE	%	N/A	N/A	N/A	2.1	8.8	N/A	N/A
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	<1.0	2235601	<1.0	<1.0	1.0	2235603
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	2235404	<0.20	<0.20	0.20	2235402
Nitrate (N) and Nitrite(N)	mg/L	N/A	N/A	N/A	<0.20	<0.20	0.20	2235402

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		JS3053	JS3054		JS3056			
Sampling Date		2021/09/10	2021/09/10		2021/09/10			
	Units	TSMC-83284-CTEU-9	TSMC-84553-CTEU-9	QC Batch	TSMC-83284-(SPLP1312)	RDL	QC Batch	
CONVENTIONALS								
Fluoride (F)	mg/L	<1.0	<1.0	2238123	<1.0	1.0	2235601	
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	2238114	<0.20	0.20	2235404	
Nitrate (N) and Nitrite(N)	mg/L	<0.20	0.24	2238114	N/A	0.20	N/A	

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Lab BV ID		JS3057					
Sampling Date		2021/09/10					
	Units	TSMC-84553-(SPLP1312)	RDL	QC Batch			
CONVENTIONALS							
Fluoride (F)	mg/L	<1.0	1.0	2235601			
Nitrites (N-NO2-)	mg/L	<0.20	0.20	2235404			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

TCLP-EPA 1311 (SOIL)

Lab BV ID		JS3044	JS3050	JS3051					
Sampling Date		2021/09/10	2021/09/10	2021/09/10					
	Units	TSMC-84452	TSMC-83284	TSMC-84553	QC Batch				
% MOISTURE	%	3.1	2.1	8.8	N/A				
Leachates									
Weight of sample (g)	n/a	20.0	20.1	20.1	2234067				
pH of pre-test	n/a	<1.68	<1.68	<1.68	2234067				
pH end of leaching	n/a	4.88	4.89	4.75	2234067				
Volume extracting fluid 1 (ml)	n/a	400	400	400	2234067				
QC Batch = Quality Control Batch N/A = Not Applicable	QC Batch = Quality Control Batch								

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

SPLP-EPA 1312 (SOIL)

Lab BV ID		JS3048	JS3049	JS3056					
Sampling Date		2021/09/10	2021/09/10	2021/09/10					
	Units	TSMC-78147-(SPLP1312)	TSMC-84452-(SPLP1312)	TSMC-83284-(SPLP1312)	QC Batch				
Leachates									
Weight of sample (g)	n/a	25.0	25.2	25.1	2234107				
Volume of extracting fluid (mL)	n/a	500	500	500	2234107				
pH after 18 hours leaching	n/a	9.66	5.49	5.61	2234107				
pH of extracting fluid	n/a	4.17	4.17	4.17	2234107				
QC Batch = Quality Control Batch	<u> </u>								

Lab BV ID		JS3057				
Sampling Date		2021/09/10				
	Units	TSMC-84553-(SPLP1312)	QC Batch			
Leachates						
Weight of sample (g)	n/a	25.0	2234107			
Volume of extracting fluid (mL)	n/a	500	2234107			
pH after 18 hours leaching	n/a	5.78	2234107			
pH of extracting fluid	n/a	4.17	2234107			
QC Batch = Quality Control Batch	1					

Client Project #: ARD Site Location: DS04 Your P.O. #: 3000000997

WATER LEACHATE-CTEU-9 (SOIL)

Lab BV ID		JS3046	JS3047	JS3053	JS3054	
Sampling Date		2021/09/10	2021/09/10	2021/09/10	2021/09/10	
	Units	TSMC-78147-CTEU-9	TSMC-84452-CTEU-9	TSMC-83284-CTEU-9	TSMC-84553-CTEU-9	QC Batch
Leachates						
Weight of sample (g)	n/a	40.1	40.0	40.2	40.1	2235199
pH Deionized water	n/a	5.66	5.66	5.66	5.66	2235199
Date extraction fluid added	n/a	2021/09/29	2021/09/29	2021/09/29	2021/09/29	2235199
Date leaching terminated	n/a	2021/10/06	2021/10/06	2021/10/06	2021/10/06	2235199
Volume of extracting fluid (mL)	n/a	160	160	160	160	2235199
pH after 7 days of leaching	n/a	7.42	7.96	6.52	7.04	2235199
QC Batch = Quality Control Batch	1			-		-

Lab BV ID		JS3054	
Sampling Date		2021/09/10	
	Units	TSMC-84553-CTEU-9 Lab-Dup	QC Batch
Leachates			
Weight of sample (g)	n/a	40.0	2235199
pH Deionized water	n/a	5.66	2235199
Date extraction fluid added	n/a	2021/09/29	2235199
Date leaching terminated	n/a	2021/10/06	2235199
Volume of extracting fluid (mL)	n/a	160	2235199
pH after 7 days of leaching	n/a	6.96	2235199
QC Batch = Quality Control Batch	1		

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS-LAB LEACHATE (ROCK)

Reported detection limits are multiplied by dilution factors used for sample analysis.

TOTAL EXTRACTABLE METALS (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

TCLP-EPA 1311 (SOIL)

pH du pre-test : Veuillez noter que le résultat de l'échantillon (JS3043, JS3044, JS3050 et JS3051) sont en dehors de la courbe de calibration, et aussi dehors des limites de la linearite.

Results relate only to the items tested.

Lab BV Job #: C150724 TATA STEEL MINERALS CANADA Report Date: 2021/12/29 Client Project #: ARD

Site Location: DS04 Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT

04/06							
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2234067	SMD	Method Blank	pH end of leaching	2021/09/28	4.91/2.85	recovery	n/a
223 .007	55	method Blank	Volume extracting fluid 1 (ml)	2021/09/28	400		n/a
2234107	SMD	Method Blank	Volume of extracting fluid (mL)	2021/09/28	500		n/a
	5		pH after 18 hours leaching	2021/09/28	4.17		n/a
			pH of extracting fluid	2021/09/28	4.17		n/a
2234493	AT7	Spiked Blank	Silver (Ag)	2021/09/30	/	99	%
		opiniou Diann	Arsenic (As)	2021/09/30		104	%
			Barium (Ba)	2021/09/30		101	%
			Boron (B)	2021/09/30		109	%
			Cadmium (Cd)	2021/09/30		101	%
			Chromium (Cr)	2021/09/30		102	%
			Copper (Cu)	2021/09/30		96	%
			Cobalt (Co)	2021/09/30		98	%
			Tin (Sn)	2021/09/30		92	%
			Iron (Fe)	2021/09/30		100	%
			Manganese (Mn)	2021/09/30		103	%
			Molybdenum (Mo)	2021/09/30		96	%
			Nickel (Ni)	2021/09/30		104	%
			Mercury (Hg)	2021/09/30		99	%
			Lead (Pb)	2021/09/30		94	%
			Selenium (Se)	2021/09/30		84	%
			Uranium (U)	2021/09/30		100	%
			Zinc (Zn)	2021/09/30		103	%
2234493	AT7	Method Blank	Silver (Ag)	2021/09/30	<0.50	105	mg/kg
2234433	Α17	Wicthod Blank	Arsenic (As)	2021/09/30	<2.0		mg/kg
			Barium (Ba)	2021/09/30	<4.0		mg/kg
			Boron (B)	2021/09/30	<2.0		mg/kg
			Cadmium (Cd)	2021/09/30	<0.10		mg/kg
			Chromium (Cr)	2021/09/30	<1.0		mg/kg
			Copper (Cu)	2021/09/30	<1.0		mg/kg
			Cobalt (Co)	2021/09/30	<1.0		mg/kg
			Tin (Sn)	2021/09/30	<1.0		mg/kg
			Iron (Fe)	2021/09/30	<10		mg/kg
			Manganese (Mn)	2021/09/30	<2.0		mg/kg
			Molybdenum (Mo)	2021/09/30	<0.50		mg/kg
			Nickel (Ni)	2021/09/30	<0.50		mg/kg
			Mercury (Hg)	2021/09/30	< 0.010		mg/kg
			Lead (Pb)	2021/09/30	<1.0		mg/kg
			Selenium (Se)	2021/09/30	<0.50		mg/kg
			Uranium (U)	2021/09/30	<2.0		mg/kg
			Zinc (Zn)	2021/09/30	<5.0		mg/kg
2234616	MFM	LEACH. BLANK	Silver (Ag)	2021/09/29	<0.30		ug/L
FOIO	1412141	LL TOTAL DESTRICT	Arsenic (As)	2021/09/29	<2.0		ug/L
			Barium (Ba)	2021/09/29	<5.0		ug/L ug/L
			Boron (B)	2021/09/29	<50		ug/L
			Cadmium (Cd)	2021/09/29	<1.0		ug/L
			Chromium (Cr)	2021/09/29	<7.0		ug/L
			Cobalt (Co)	2021/09/29	<10		ug/L
			Copper (Cu)	2021/09/29	13,		ug/L
			55P5. (55)		RDL=3.0		-0/-
			Tin (Sn)	2021/09/29	<50		ug/L

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				·		·	
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Iron (Fe)	2021/09/29	<100		ug/L
			Manganese (Mn)	2021/09/29	<3.0		ug/L
			Mercury (Hg)	2021/09/29	<0.50		ug/L
			Molybdenum (Mo)	2021/09/29	<10		ug/L
			Nickel (Ni)	2021/09/29	<6.0		ug/L
			Lead (Pb)	2021/09/29	<1.0		ug/L
			Selenium (Se)	2021/09/29	<1.0		ug/L
			Uranium (U)	2021/09/29	<0.60		ug/L
			Zinc (Zn)	2021/09/29	<5.0		ug/L
2234616	MEM	Spiked Blank	Silver (Ag)	2021/09/29		101	%
		•	Arsenic (As)	2021/09/29		97	%
			Barium (Ba)	2021/09/29		106	%
			Boron (B)	2021/09/29		101	%
			Cadmium (Cd)	2021/09/29		99	%
			Chromium (Cr)	2021/09/29		90	%
			Cobalt (Co)	2021/09/29		90	%
			Copper (Cu)	2021/09/29		84	%
			Tin (Sn)	2021/09/29		107	%
			Iron (Fe)	2021/09/29		93	%
			Manganese (Mn)	2021/09/29		94	%
		Mercury (Hg)	2021/09/29		82	%	
		Molybdenum (Mo)	2021/09/29		101	%	
			Nickel (Ni)	2021/09/29		88	%
			Lead (Pb)	2021/09/29		98	%
			Selenium (Se)	2021/09/29		102	%
			Uranium (U)	2021/09/29		102	%
			Zinc (Zn)	2021/09/29		88	%
2234625	NAENA	LEACH BLANK	Silver (Ag)	2021/09/29	<0.30	00	∞ ug/L
2234023	IVILIVI	LLACH, BLAINK	Arsenic (As)	2021/09/29	<2.0		
				2021/09/29	60,		ug/L
	25 MEM LEACH. BLANK	Boron (B)	2021/09/29	RDL=50		ug/L	
			Cadmium (Cd)	2021/09/29	<1.0		ug/L
			Chromium (Cr)	2021/09/29	<7.0		ug/L
			Cobalt (Co)	2021/09/29	<10		ug/L
			Copper (Cu)	2021/09/29	7.1,		ug/L
					RDL=3.0		
			Tin (Sn)	2021/09/29	<50		ug/L
			Iron (Fe)	2021/09/29	<100		ug/L
			Manganese (Mn)	2021/09/29	<3.0		ug/L
			Mercury (Hg)	2021/09/29	<0.50		ug/L
			Molybdenum (Mo)	2021/09/29	<10		ug/L
			Nickel (Ni)	2021/09/29	<6.0		ug/L
			Lead (Pb)	2021/09/29	<1.0		ug/L
			Selenium (Se)	2021/09/29	<1.0		ug/L
			Uranium (U)	2021/09/29	<0.60		ug/L
			Zinc (Zn)	2021/09/29	<5.0		ug/L
2234625	MEM	Spiked Blank	Silver (Ag)	2021/09/29		101	%
		•	Arsenic (As)	2021/09/29		103	%
			Boron (B)	2021/09/29		114	%
			Cadmium (Cd)	2021/09/29		99	%
			Chromium (Cr)	2021/09/29		98	%

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Cobalt (Co)	2021/09/29		99	%
			Copper (Cu)	2021/09/29		95	%
			Tin (Sn)	2021/09/29		108	%
			Iron (Fe)	2021/09/29		102	%
			Manganese (Mn)	2021/09/29		101	%
			Mercury (Hg)	2021/09/29		87	%
			Molybdenum (Mo)	2021/09/29		103	%
			Nickel (Ni)	2021/09/29		96	%
			Lead (Pb)	2021/09/29		100	%
			Selenium (Se)	2021/09/29		105	%
			Uranium (U)	2021/09/29		104	%
			Zinc (Zn)	2021/09/29		95	%
2235199	SMD	Method Blank	pH Deionized water	2021/10/06	5.66		n/a
			Date extraction fluid added	2021/10/06	2021/09/29		n/a
			Date leaching terminated	2021/10/06	2021/10/06		n/a
			Volume of extracting fluid (mL)	2021/10/06	160		n/a
			pH after 7 days of leaching	2021/10/06	7.04		n/a
2235402	VPA	LEACH. BLANK	Nitrites (N-NO2-)	2021/09/30	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/09/30	<0.20		mg/L
2235402	VPA	Spiked Blank	Nitrites (N-NO2-)	2021/09/30		100	%
			Nitrate (N) and Nitrite(N)	2021/09/30		100	%
2235404	VPA	LEACH. BLANK	Nitrites (N-NO2-)	2021/09/30	<0.20		mg/L
2235404	VPA	Spiked Blank	Nitrites (N-NO2-)	2021/09/30		101	%
2235601	YAZ	LEACH. BLANK	Fluoride (F)	2021/09/30	<1.0		mg/L
2235601	YAZ	Spiked Blank	Fluoride (F)	2021/09/30		96	%
2235603	YAZ	LEACH. BLANK	Fluoride (F)	2021/09/30	<1.0		mg/L
2235603	YAZ	Spiked Blank	Fluoride (F)	2021/09/30		96	%
2236380	LI	Spiked Blank	Fluoride (F)	2021/10/04		108	%
2236380	LI	Method Blank	Fluoride (F)	2021/10/04	<1.0		mg/kg
2236382	SNA	Spiked Blank	Nitrates (N-NO3-)	2021/10/03		100	%
		•	Nitrites (N-NO2-)	2021/10/03		102	%
			Nitrate (N) and Nitrite(N)	2021/10/03		101	%
2236382	SNA	Method Blank	Nitrates (N-NO3-)	2021/10/03	<1.0		mg/kg
			Nitrites (N-NO2-)	2021/10/03	<0.20		mg/kg
			Nitrate (N) and Nitrite(N)	2021/10/03	<1.0		mg/kg
2237970	ZEO	LEACH. BLANK	Silver (Ag)	2021/10/07	<0.30		ug/L
			Arsenic (As)	2021/10/07	<2.0		ug/L
			Barium (Ba)	2021/10/07	<5.0		ug/L
			Boron (B)	2021/10/07	<50		ug/L
			Cadmium (Cd)	2021/10/07	<1.0		ug/L
			Chromium (Cr)	2021/10/07	<7.0		ug/L
			Cobalt (Co)	2021/10/07	<10		ug/L
			Copper (Cu)	2021/10/07	<3.0		ug/L
			Tin (Sn)	2021/10/07	<50		ug/L
			Iron (Fe)	2021/10/07	<100		ug/L
			Manganese (Mn)	2021/10/07	<3.0		ug/L
			Mercury (Hg)	2021/10/07	<0.50		ug/L
			Molybdenum (Mo)	2021/10/07	<10		ug/L ug/L
			Nickel (Ni)	2021/10/07	<6.0		ug/L ug/L
			Lead (Pb)	2021/10/07	<1.0		ug/L ug/L
			Leau (i b)	2021/10/0/	\1.0		ug/ L

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Uranium (U)	2021/10/07	<0.60		ug/L
			Zinc (Zn)	2021/10/07	<5.0		ug/L
2237970	ZEO	Spiked Blank	Silver (Ag)	2021/10/07		245 (1)	%
			Arsenic (As)	2021/10/07		107	%
			Barium (Ba)	2021/10/07		100	%
			Boron (B)	2021/10/07		97	%
			Cadmium (Cd)	2021/10/07		104	%
			Chromium (Cr)	2021/10/07		102	%
			Cobalt (Co)	2021/10/07		101	%
			Copper (Cu)	2021/10/07		95	%
			Tin (Sn)	2021/10/07		109	%
			Iron (Fe)	2021/10/07		98	%
			Manganese (Mn)	2021/10/07		105	%
			Mercury (Hg)	2021/10/07		90	%
			Molybdenum (Mo)	2021/10/07		106	%
			Nickel (Ni)	2021/10/07		97	%
			Lead (Pb)	2021/10/07		96	%
			Selenium (Se)	2021/10/07		101	%
			Uranium (U)	2021/10/07		99	%
			Zinc (Zn)	2021/10/07		100	%
2238114	NDA	LEACH. BLANK	Nitrites (N-NO2-)	2021/10/08	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/10/08	<0.20		mg/L
2238114	NDA	Spiked Blank	Nitrites (N-NO2-)	2021/10/08		99	%
			Nitrate (N) and Nitrite(N)	2021/10/08		97	%
2238123	YAZ	LEACH. BLANK	Fluoride (F)	2021/10/07	<1.0		mg/L
2238123	YAZ	Spiked Blank	Fluoride (F)	2021/10/07		107	%

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

Client Project #: ARD
Site Location: DS04
Your P.O. #: 3000000997

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Alex Thibert

Membre OCQ #2020-05

Alex Thibert, B.Sc., Chemist, Montréal, Analyst II, Chemist in Training

Catherine Anne Mardakis, Project Manager

Flour Samp 8005-093 Présec

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Shu Yang 2008-014

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 3000000997 Your Project #: ARD Your C.O.C. #: N-A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2022/02/16

Report #: R2734816 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C158457 Received: 2021/10/27, 15:30

Sample Matrix: Soil # Samples Received: 3

•		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Base Accounting (Sobek modified) (1)	1	2022/02/15	N/A		
Fluoride (free)	1	2021/11/11	2021/11/11	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/11/23	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/11/05	STL SOP-00038	SM 23 4500-F m
Fluoride- Leached	1	N/A	2021/11/06	STL SOP-00038	SM 23 4500-F m
Water Leachate (CTEU - 9)	1	2021/11/11	2021/11/18	STL SOP-00024	MA100-Lixcom1.1 R1 m
Acid rain simulation leachate (EPA 1312)	1	2021/11/03	2021/11/04	STL SOP-00024	MA100-Lixcom1.1 R1 m
Total Extractable Metals (low level)	1	2021/11/03	2021/11/05	STL SOP-00069	MA.200–Mét. 1.2 R7
Metals - Leached	1	2021/11/20	2021/11/21	STL SOP-00062	MA.200-Mét. 1.2 R7
Metals - Leached	1	2021/11/04	2021/11/06	STL SOP-00062	MA.200–Mét. 1.2 R7
Metals - Leached	1	2021/11/04	2021/11/07	STL SOP-00062	MA.200–Mét. 1.2 R7
Nitrate and/or Nitrite- Leached	1	N/A	2021/11/20	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite- Leached	2	N/A	2021/11/06	STL SOP-00014	MA.300-lons 1.3 R3 m
Nitrate and/or Nitrite	1	2021/11/12	2021/11/12	STL SOP-00014	MA.300-lons 1.3 R3 m
Toxicity Charact. Leach. Proc.(EPA 1311)	1	2021/11/03	2021/11/04	STL SOP-00024	MA100-Lixcom1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your P.O. #: 3000000997 Your Project #: ARD Your C.O.C. #: N-A

Attention: Mariana Trindade

TATA STEEL MINERALS CANADA 1000, RUE SHERBROOKE OUEST BUREAU 1120 MONTRÉAL, QC CANADA H3A 3G4

Report Date: 2022/02/16

Report #: R2734816 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C158457

Received: 2021/10/27, 15:30

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Burnaby, 4606 Canada Way, Burnaby, BC, V5G 1K5

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Ma Pr Ma 16

Martine Lepage Project Manager and Account Manager 16 Feb 2022 09:44:07

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Martine Lepage, Project Manager and Account Manager

Email: Martine.LEPAGE@bureauveritas.com Phone# (418)543-3788 Ext:7066201

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: ARD Your P.O. #: 3000000997

TOTAL EXTRACTABLE METALS (SOIL)

Bureau Veritas ID					JW4979		
Sampling Date					2021/10/26		
COC Number					N-A		
	Units	Α	В	С	TSMC-90125	RDL	QC Batch
METALS							
Silver (Ag)	mg/kg	2	20	40	<0.50	0.50	2247874
Arsenic (As)	mg/kg	6	30	50	7.7	2.0	2247874
Barium (Ba)	mg/kg	340	500	2000	55	4.0	2247874
Boron (B)	mg/kg	ı	ı		<2.0	2.0	2247874
Cadmium (Cd)	mg/kg	1.5	5	20	<0.10	0.10	2247874
Chromium (Cr)	mg/kg	100	250	800	<1.0	1.0	2247874
Copper (Cu)	mg/kg	50	100	500	3.8	1.0	2247874
Cobalt (Co)	mg/kg	25	50	300	7.4	1.0	2247874
Tin (Sn)	mg/kg	5	50	300	<1.0	1.0	2247874
Iron (Fe) †	mg/kg	•	•		86000	10	2247874
Manganese (Mn)	mg/kg	1000	1000	2200	2900	2.0	2247874
Molybdenum (Mo)	mg/kg	2	10	40	<0.50	0.50	2247874
Nickel (Ni)	mg/kg	50	100	500	0.83	0.50	2247874
Mercury (Hg)	mg/kg	0.2	2	10	0.047	0.010	2247874
Lead (Pb)	mg/kg	50	500	1000	<1.0	1.0	2247874
Selenium (Se)	mg/kg	1	3	10	<0.50	0.50	2247874
Uranium (U) †	mg/kg	•	-		<2.0	2.0	2247874
Zinc (Zn)	mg/kg	140	500	1500	<5.0	5.0	2247874

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accreditable

METALS-LAB LEACHATE (SOIL)

Bureau Veritas ID		JW4979			JW4982		JW4985		
Sampling Date		2021/10/26			2021/10/26		2021/10/26		
COC Number		N-A			N-A		N-A		
	Units	TSMC-90125	RDL	QC Batch	TSMC-90125-CTEU-9	QC Batch	TSMC-90125-(SPLP1312)	RDL	QC Batch
METALS									
Silver (Ag) †	ug/L	<0.30	0.30	2248630	<0.30	2254808	<0.30	0.30	2248627
Arsenic (As)	ug/L	<2.0	2.0	2248630	<2.0	2254808	<2.0	2.0	2248627
Barium (Ba)	ug/L	10	5.0	2248630	<5.0	2254808	<5.0	5.0	2248627
Boron (B)	ug/L	<50	50	2248630	<50	2254808	<50	50	2248627
Cadmium (Cd)	ug/L	<1.0	1.0	2248630	<1.0	2254808	<1.0	1.0	2248627
Chromium (Cr)	ug/L	<7.0	7.0	2248630	<7.0	2254808	<7.0	7.0	2248627
Cobalt (Co)	ug/L	<10	10	2248630	<10	2254808	<10	10	2248627
Copper (Cu)	ug/L	<10	10	2248630	<3.0	2254808	<3.0	3.0	2248627
Tin (Sn) †	ug/L	<50	50	2248630	<50	2254808	<50	50	2248627
Iron (Fe)	ug/L	180	100	2248630	<100	2254808	<100	100	2248627
Manganese (Mn)	ug/L	510	3.0	2248630	<3.0	2254808	7.7	3.0	2248627
Mercury (Hg)	ug/L	<0.50	0.50	2248630	<0.50	2254808	<0.50	0.50	2248627
Molybdenum (Mo)	ug/L	<10	10	2248630	<10	2254808	<10	10	2248627
Nickel (Ni)	ug/L	<6.0	6.0	2248630	<6.0	2254808	<6.0	6.0	2248627
Lead (Pb)	ug/L	<1.0	1.0	2248630	<1.0	2254808	<1.0	1.0	2248627
Selenium (Se)	ug/L	<1.0	1.0	2248630	<1.0	2254808	<1.0	1.0	2248627
Uranium (U)	ug/L	<0.60	0.60	2248630	<0.60	2254808	<0.60	0.60	2248627
Zinc (Zn)	ug/L	6.7	5.0	2248630	<5.0	2254808	<5.0	5.0	2248627

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accreditable

CONVENTIONAL PARAMETERS (SOIL)

Bureau Veritas ID					JW4979					
Sampling Date					2021/10/26					
COC Number					N-A					
	Units	Α	В	С	TSMC-90125	RDL	QC Batch			
CONVENTIONALS	CONVENTIONALS									
Fluoride (F)	mg/kg	200	400	2000	1.3	1.0	2251162			
Nitrates (N-NO3-) †	mg/kg	-	-		<1.0	1.0	2251645			
Nitrites (N-NO2-) †	mg/kg	-	-		<0.20	0.20	2251645			
Nitrate (N) and Nitrite(N)	mg/kg	-	-		<1.0	1.0	2251645			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accreditable

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Bureau Veritas ID		JW4979		JW4982		JW4985					
Sampling Date		2021/10/26		2021/10/26		2021/10/26					
COC Number		N-A		N-A		N-A					
	Units	TSMC-90125	QC Batch	TSMC-90125-CTEU-9	QC Batch	TSMC-90125-(SPLP1312)	RDL	QC Batch			
CONVENTIONALS											
Fluoride (F)	mg/L	<1.0	2249126	<1.0	2254754	<1.0	1.0	2248655			
Nitrites (N-NO2-)	mg/L	<0.20	2249129	<0.20	2254755	<0.20	0.20	2248661			
Nitrate (N) and Nitrite(N)	mg/L	<0.20	2249129	<0.20	2254755	<0.20	0.20	2248661			
	RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

TCLP-EPA 1311 (SOIL)

Bureau Veritas ID		JW4979						
Sampling Date		2021/10/26						
COC Number		N-A						
	Units	TSMC-90125	QC Batch					
Leachates								
Weight of sample (g)	n/a	20.0	2247686					
pH of pre-test	n/a	<1.68	2247686					
pH end of leaching	n/a	4.90	2247686					
Volume extracting fluid 1 (ml)	n/a	400	2247686					
QC Batch = Quality Control Bato	ch		·					

TATA STEEL MINERALS CANADA Client Project #: ARD

Your P.O. #: 3000000997

SPLP-EPA 1312 (SOIL)

Bureau Veritas ID		JW4985						
Sampling Date		2021/10/26						
COC Number		N-A						
	Units	TSMC-90125-(SPLP1312)	QC Batch					
Leachates								
Weight of sample (g)	n/a	25.1	2247689					
Volume of extracting fluid (mL)	n/a	500	2247689					
pH after 18 hours leaching	n/a	6.37	2247689					
pH of extracting fluid	n/a	4.17	2247689					
QC Batch = Quality Control Batch	1							

WATER LEACHATE-CTEU-9 (SOIL)

Bureau Veritas ID		JW4982						
Sampling Date		2021/10/26						
COC Number		N-A						
	Units	TSMC-90125-CTEU-9	QC Batch					
Leachates								
Weight of sample (g)	n/a	40.0	2251138					
pH Deionized water	n/a	5.46	2251138					
Date extraction fluid added	n/a	2021/11/11	2251138					
Date leaching terminated	n/a	2021/11/18	2251138					
Volume of extracting fluid (mL)	n/a	160	2251138					
pH after 7 days of leaching	n/a	6.96	2251138					
QC Batch = Quality Control Batch	1							

GENERAL COMMENTS

A,B,C: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS-LAB LEACHATE (SOIL)

Reported detection limits are multiplied by dilution factors used for sample analysis.

TCLP-EPA 1311 (SOIL)

pH du pre-test : Veuillez noter que le résultat de l'échantillon (JW4979) est en dehors de la courbe de calibration, et certains d'entre eux aussi dehors des limites de la linearite.

Results relate only to the items tested.

Client Project #: ARD Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2247686	SMD	Method Blank	pH end of leaching	2021/11/04	4.90/2.92	· · · · · · · · · · · · · · · · · · ·	n/a
			Volume extracting fluid 1 (ml)	2021/11/04	400		n/a
2247689	SMD	Method Blank	Volume of extracting fluid (mL)	2021/11/04	500		n/a
			pH after 18 hours leaching	2021/11/04	4.19		n/a
			pH of extracting fluid	2021/11/04	4.17		n/a
2247874	JF1	Spiked Blank	Silver (Ag)	2021/11/05		95	%
		'	Arsenic (As)	2021/11/05		102	%
			Barium (Ba)	2021/11/05		105	%
			Boron (B)	2021/11/05		98	%
			Cadmium (Cd)	2021/11/05		103	%
			Chromium (Cr)	2021/11/05		96	%
			Copper (Cu)	2021/11/05		94	%
			Cobalt (Co)	2021/11/05		100	%
			Tin (Sn)	2021/11/05		105	%
			Iron (Fe)	2021/11/05		91	%
			Manganese (Mn)	2021/11/05		93	%
			Molybdenum (Mo)	2021/11/05		103	%
			Nickel (Ni)	2021/11/05		97	%
			Mercury (Hg)	2021/11/05		100	%
			Lead (Pb)	2021/11/05		103	%
			Selenium (Se)	2021/11/05		101	%
			Uranium (U)	2021/11/05		100	%
			• •	2021/11/05		96	%
2247874	JF1	Method Blank	Zinc (Zn)		<0.50	90	
224/8/4	JFI	Method Blank	Silver (Ag)	2021/11/05			mg/kg
			Arsenic (As)	2021/11/05	<2.0		mg/kg
			Barium (Ba)	2021/11/05	<4.0		mg/kg
			Boron (B)	2021/11/05	<2.0		mg/kg
			Cadmium (Cd)	2021/11/05	<0.10		mg/kg
			Chromium (Cr)	2021/11/05	<1.0		mg/kg
			Copper (Cu)	2021/11/05	<1.0		mg/kg
			Cobalt (Co)	2021/11/05	<1.0		mg/kg
			Tin (Sn)	2021/11/05	<1.0		mg/kg
			Iron (Fe)	2021/11/05	<10		mg/kg
			Manganese (Mn)	2021/11/05	<2.0		mg/kg
			Molybdenum (Mo)	2021/11/05	<0.50		mg/kg
			Nickel (Ni)	2021/11/05	<0.50		mg/kg
			Mercury (Hg)	2021/11/05	<0.010		mg/kg
			Lead (Pb)	2021/11/05	<1.0		mg/kg
			Selenium (Se)	2021/11/05	<0.50		mg/kg
			Uranium (U)	2021/11/05	<2.0		mg/kg
			Zinc (Zn)	2021/11/05	<5.0		mg/kg
2248627	NET	LEACH. BLANK	Silver (Ag)	2021/11/07	<0.30		ug/L
			Arsenic (As)	2021/11/07	<2.0		ug/L
			Barium (Ba)	2021/11/07	<5.0		ug/L
			Boron (B)	2021/11/07	<50		ug/L
			Cadmium (Cd)	2021/11/07	<1.0		ug/L
			Chromium (Cr)	2021/11/07	<7.0		ug/L
			Cobalt (Co)	2021/11/07	<10		ug/L
			Copper (Cu)	2021/11/07	<3.0		ug/L
			Tin (Sn)	2021/11/07	<50		ug/L
			Iron (Fe)	2021/11/07	<100		ug/L
			Manganese (Mn)	2021/11/07	<3.0		ug/L

Client Project #: ARD Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
		, S 71 -	Mercury (Hg)	2021/11/07	<0.50		ug/L
			Molybdenum (Mo)	2021/11/07	<10		ug/L
			Nickel (Ni)	2021/11/07	<6.0		ug/L
			Lead (Pb)	2021/11/07	<1.0		ug/L
			Selenium (Se)	2021/11/07	<1.0		ug/L
			Uranium (U)	2021/11/07	<0.60		ug/L
			Zinc (Zn)	2021/11/07	<5.0		ug/L
2248627	NET	Spiked Blank	Silver (Ag)	2021/11/07		103	%
		·	Arsenic (As)	2021/11/07		110	%
			Barium (Ba)	2021/11/07		112	%
			Boron (B)	2021/11/07		94	%
			Cadmium (Cd)	2021/11/07		106	%
			Chromium (Cr)	2021/11/07		97	%
			Cobalt (Co)	2021/11/07		97	%
			Copper (Cu)	2021/11/07		93	%
			Tin (Sn)	2021/11/07		112	%
			Iron (Fe)	2021/11/07		102	%
			Manganese (Mn)	2021/11/07		106	%
			Mercury (Hg)	2021/11/07		93	%
			Molybdenum (Mo)	2021/11/07		108	%
			Nickel (Ni)	2021/11/07		94	%
			Lead (Pb)	2021/11/07		105	%
			Selenium (Se)	2021/11/07		107	%
			Uranium (U)	2021/11/07		104	%
			Zinc (Zn)	2021/11/07		97	%
2248630	NET	LEACH. BLANK	Silver (Ag)	2021/11/06	<0.30		ug/L
			Arsenic (As)	2021/11/06	<2.0		ug/L
			Barium (Ba)	2021/11/06	<5.0		ug/L
			Boron (B)	2021/11/06	<50		ug/L
			Cadmium (Cd)	2021/11/06	<1.0		ug/L
			Chromium (Cr)	2021/11/06	<7.0		ug/L
			Cobalt (Co)	2021/11/06	<10		ug/L
			Copper (Cu)	2021/11/06	<10		ug/L
			Tin (Sn)	2021/11/06	<50		ug/L
			Iron (Fe)	2021/11/06	<100		ug/L
			Manganese (Mn)	2021/11/06	<3.0		ug/L
			Mercury (Hg)	2021/11/06	<0.50		ug/L
			Molybdenum (Mo)	2021/11/06	<10		ug/L
			Nickel (Ni)	2021/11/06	<6.0		ug/L
			Lead (Pb)	2021/11/06	<1.0		ug/L
			Selenium (Se)	2021/11/06	<1.0		ug/L
			Uranium (U)	2021/11/06	<0.60		ug/L
			Zinc (Zn)	2021/11/06	<5.0		ug/L
2248630	NET	Spiked Blank	Silver (Ag)	2021/11/06		107	%
			Arsenic (As)	2021/11/06		114	%
			Barium (Ba)	2021/11/06		114	%
			Boron (B)	2021/11/06		121 (1)	%
			Cadmium (Cd)	2021/11/06		107	%
			Chromium (Cr)	2021/11/06		105	%
			Cobalt (Co)	2021/11/06		104	%
			Copper (Cu)	2021/11/06		109	%
			Tin (Sn)	2021/11/06		115	%

Client Project #: ARD Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Iron (Fe)	2021/11/06		109	%
			Manganese (Mn)	2021/11/06		109	%
			Mercury (Hg)	2021/11/06		93	%
			Molybdenum (Mo)	2021/11/06		112	%
			Nickel (Ni)	2021/11/06		103	%
			Lead (Pb)	2021/11/06		111	%
			Selenium (Se)	2021/11/06		111	%
			Uranium (U)	2021/11/06		105	%
			Zinc (Zn)	2021/11/06		101	%
2248655	YAZ	LEACH. BLANK	Fluoride (F)	2021/11/05	<1.0		mg/L
2248655	YAZ	Spiked Blank	Fluoride (F)	2021/11/05		103	%
2248661	RHT	LEACH. BLANK	Nitrites (N-NO2-)	2021/11/06	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/11/06	1.6,		mg/L
					RDL=0.20		
2248661	RHT	Spiked Blank	Nitrites (N-NO2-)	2021/11/06		90	%
			Nitrate (N) and Nitrite(N)	2021/11/06		96	%
2249126	YAZ	LEACH. BLANK	Fluoride (F)	2021/11/06	<1.0		mg/L
2249126	YAZ	Spiked Blank	Fluoride (F)	2021/11/06		105	%
2249129	SNA	LEACH. BLANK	Nitrites (N-NO2-)	2021/11/06	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/11/06	<0.20		mg/L
2249129	SNA	Spiked Blank	Nitrites (N-NO2-)	2021/11/06		92	%
		•	Nitrate (N) and Nitrite(N)	2021/11/06		98	%
2251138	SMD	Method Blank	pH Deionized water	2021/11/18	5.46		n/a
			Date extraction fluid added	2021/11/18	2021/11/11		n/a
			Date leaching terminated	2021/11/18	2021/11/18		n/a
			Volume of extracting fluid (mL)	2021/11/18	160		n/a
			pH after 7 days of leaching	2021/11/18	7.12		n/a
2251162	LI	Spiked Blank	Fluoride (F)	2021/11/11		97	%
2251162	LI	Method Blank	Fluoride (F)	2021/11/11	<1.0		mg/kg
2251645	RHT	Spiked Blank	Nitrates (N-NO3-)	2021/11/12		93	%
		Tr	Nitrites (N-NO2-)	2021/11/12		98	%
			Nitrate (N) and Nitrite(N)	2021/11/12		95	%
2251645	RHT	Method Blank	Nitrates (N-NO3-)	2021/11/12	<1.0		mg/kg
			Nitrites (N-NO2-)	2021/11/12	<0.20		mg/kg
			Nitrate (N) and Nitrite(N)	2021/11/12	<1.0		mg/kg
2254754	YAZ	LEACH. BLANK	Fluoride (F)	2021/11/23	<1.0		mg/L
2254754	YAZ	Spiked Blank	Fluoride (F)	2021/11/23		101	%
2254755	RHT	LEACH. BLANK	Nitrites (N-NO2-)	2021/11/20	<0.20		mg/L
			Nitrate (N) and Nitrite(N)	2021/11/20	<0.20		mg/L
2254755	RHT	Spiked Blank	Nitrites (N-NO2-)	2021/11/20		98	%
2234733		Spinea Diann	Nitrate (N) and Nitrite(N)	2021/11/20		96	%
2254808	VFT	LEACH. BLANK	Silver (Ag)	2021/11/21	<0.30	30	ug/L
223 1000	• • •	EL/ (CIT. DE/ (IVI)	Arsenic (As)	2021/11/21	<2.0		ug/L
			Barium (Ba)	2021/11/21	<5.0		ug/L
			Boron (B)	2021/11/21	<50		ug/L
			Cadmium (Cd)	2021/11/21	<1.0		ug/L
			Chromium (Cr)	2021/11/21	<7.0		ug/L
			Cobalt (Co)	2021/11/21	<10		ug/L ug/L
			Copper (Cu)	2021/11/21	<3.0		ug/L ug/L
			Tin (Sn)	2021/11/21	<50		ug/L ug/L
			Iron (Fe)	2021/11/21	<100		ug/L ug/L
			11011 (1 <i>E)</i>	2021/11/21	~T00		ug/ L

Client Project #: ARD Your P.O. #: 3000000997

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Mercury (Hg)	2021/11/21	<0.50		ug/L
			Molybdenum (Mo)	2021/11/21	<10		ug/L
			Nickel (Ni)	2021/11/21	<6.0		ug/L
			Lead (Pb)	2021/11/21	<1.0		ug/L
			Selenium (Se)	2021/11/21	<1.0		ug/L
			Uranium (U)	2021/11/21	< 0.60		ug/L
			Zinc (Zn)	2021/11/21	<5.0		ug/L
2254808	VFT	Spiked Blank	Silver (Ag)	2021/11/21		105	%
			Arsenic (As)	2021/11/21		105	%
			Barium (Ba)	2021/11/21		104	%
			Boron (B)	2021/11/21		99	%
			Cadmium (Cd)	2021/11/21		101	%
			Chromium (Cr)	2021/11/21		99	%
			Cobalt (Co)	2021/11/21		99	%
			Copper (Cu)	2021/11/21		97	%
			Tin (Sn)	2021/11/21		107	%
			Iron (Fe)	2021/11/21		101	%
			Manganese (Mn)	2021/11/21		101	%
			Mercury (Hg)	2021/11/21		100	%
			Molybdenum (Mo)	2021/11/21		100	%
			Nickel (Ni)	2021/11/21		101	%
			Lead (Pb)	2021/11/21		97	%
			Selenium (Se)	2021/11/21		105	%
			Uranium (U)	2021/11/21		98	%
			Zinc (Zn)	2021/11/21		97	%
2254808	VFT	Method Blank	Silver (Ag)	2021/11/21	<0.30		ug/L
			Arsenic (As)	2021/11/21	<2.0		ug/L
			Barium (Ba)	2021/11/21	<5.0		ug/L
			Boron (B)	2021/11/21	<50		ug/L
			Cadmium (Cd)	2021/11/21	<1.0		ug/L
			Chromium (Cr)	2021/11/21	<7.0		ug/L
			Cobalt (Co)	2021/11/21	<10		ug/L
			Copper (Cu)	2021/11/21	<3.0		ug/L
			Tin (Sn)	2021/11/21	<50		ug/L
			Iron (Fe)	2021/11/21	<100		ug/L
			Manganese (Mn)	2021/11/21	<3.0		ug/L
			Mercury (Hg)	2021/11/21	<0.50		ug/L
			Molybdenum (Mo)	2021/11/21	<10		ug/L
			Nickel (Ni)	2021/11/21	<6.0		ug/L
			Lead (Pb)	2021/11/21	<1.0		ug/L ug/L
			Selenium (Se)	2021/11/21	<1.0		ug/L ug/L
			Uranium (U)	2021/11/21	<0.60		ug/L ug/L
			Zinc (Zn)	2021/11/21	<5.0		ug/L

RDL = Reportable Detection Limit

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Carret Stories American

Frédéric Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

Les Land Land

Jonathan Fauvel, B.Sc., Chemist, Montreal, Manager of Inorganics

Shu Yang 2008-014

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Appendix XIII. Stability analysis report-WSP

NOTE TECHNIQUE

CLIENT: Tata Steel Minerals Canada Ltd.

PROJET: Halde à stériles de Goodwood, Québec Réf. WSP: 181-04013-93 NT-01-FR

OBJET: Mise à jour de l'évaluation de la stabilité **DATE:** 28 juillet 2021

DESTINATAIRE: Mme Mariana Trindade, Ph. D.

Note : Ce document est une traduction de l'original intitulé Goodwood Waste Rock Dump, Quebec, Stability Assessment Update daté du 28 juillet 2021.

1 INTRODUCTION

Cette note technique résume l'évaluation et l'analyse de la stabilité réalisées pour la halde à stériles de Goodwood en tenant compte de la géométrie relevée en mars 2021 et fournie par Tata Steel Minerals Canada (TSMC).

En novembre 2020, WSP a réalisé une analyse de stabilité pour l'état final (durée de vie de la mine) de la halde à stériles de Goodwood, puis a transmis le rapport technique (WSP, 2020) à Tata Steel Minerals Canada Ltd. (TSMC). Les paramètres d'entrée de cette étude proviennent de l'évaluation de novembre 2020.

La géométrie finale de la halde à stériles a été fournie par TSMC en 2020. Une étude par LiDAR (détection et télémétrie par ondes lumineuses) de la surface existante a été fournie par TSMC en mars 2021; il s'agit de l'ensemble de données d'étude le plus à jour.

2 CRITÈRES D'ACCEPTATION

Le tableau 1 présente les exigences minimales recommandées des critères d'acceptation pour les facteurs de sécurité (FS) et la probabilité de rupture (PDR) dans le cadre des évaluations de stabilité statique et pseudo-statique en se basant sur les lignes directrices suggérées pour les conceptions de halde à stériles miniers (Guidelines for Mine Waste Dump and Stockpile Design) par Hawley et Cunning (2017).

Tableau 1 Valeurs des critères d'acceptation des facteurs de sécurité pour les haldes à stériles (d'après Hawley et Cunning, 2017)

Conséquence	Niveau de confiance des	Analyse statique		Analyse pseudo- statique	Déformation maximale	
·	données	FS minimal	PDR maximale	FS minimal	admissible	
	Faible	1,3 à 1,4	10 à 15 %	1,05 à 1,1	≤ 1 %	
Faible	Modérée	1,2 à 1,3	15 à 25 %	1 à 1,05	≤ 1,5 %	
	Élevée	1,1 à 1,2	25 à 40 %	1	≤ 2 %	
	Faible	1,4 à 1,5	2,5 à 5 %	1,1 à 1,15	≤ 0,75 %	
Modérée	Modérée	1,3 à 1,4	5 à 10 %	1,05 à 1,1	≤ 1 %	
	Élevée	1,2 à 1,3	10 à 15 %	1 à 1,05	≤ 1,5 %	
	Faible	≥ 1,5	≤ 1 %	1,15	≤ 0,5 %	
Élevée	Modérée	1,4 à 1,5	1 à 2,5 %	1,1 à 1,15	≤ 0,75 %	
	Élevée	1,3 à 1,4	2,5 à 5 %	1,05 à 1,1	≤ 1 %	

La description de chacune des catégories de conséquence et de niveau de confiance est donnée ci-dessous, telle que détaillée par Hawley et Cunning.

1. Conséquence

Faible : des haldes à stériles avec des pentes de remblais générales de moins de 25° et d'une hauteur inférieure à 100 m, avec des pentes de talus naturel de moins de 50 m de hauteur. Aucune infrastructure essentielle ni aucun accès libre dans la zone d'éboulement potentiel. Impact environnemental potentiel limité. Exposition à long terme (plus de 5 ans) pour les sites soumis à une précipitation annuelle très faible à faible (moins de 350 mm); exposition à moyen terme (1 à 5 ans) pour les sites soumis à une précipitation annuelle modérée (350 à 1 000 mm); exposition à court terme (moins d'un an) pour les sites soumis à une précipitation annuelle élevée (1 000 à 2 000 mm); construction/exploitation en saison sèche uniquement pour les sites soumis à une précipitation annuelle très élevée (plus de 2 000 mm) ou à une ou plusieurs saisons de pluies abondantes.

Modérée : des haldes à stériles avec des pentes de remblais générales de moins de 30° et d'une hauteur inférieure à 250 m, avec des pentes de talus naturel de moins de 100 m de hauteur. Aucune infrastructure essentielle ni aucun accès libre, ou des mesures de retenue/d'atténuation solides pour protéger une infrastructure essentielle ou un accès, au sein de la zone d'éboulement potentiel. Impact environnemental potentiel modéré, mais gérable. Exposition à long terme (plus de 5 ans) pour les sites soumis à une précipitation annuelle modérée (350 à 1 000 mm); exposition à moyen terme (1 à 5 ans) pour les sites soumis à une précipitation annuelle élevée (1 000 à 2 000 mm); exposition à court terme (moins d'un an) pour les sites soumis à une précipitation annuelle très élevée (plus de 2 000 mm) ou à une ou plusieurs saisons de pluies abondantes.

Élevée : des haldes à stériles avec des pentes de remblais générales de plus de 30° et d'une hauteur supérieure à 250 m, avec des pentes de talus naturel de plus de 200 m de hauteur. Infrastructure essentielle ou accès libre au sein de la zone d'éboulement potentiel avec des mesures d'atténuation ou de retenue d'éboulement limitées. Impact environnemental potentiel élevé difficile à gérer. Exposition à long terme (plus de 5 ans) pour les sites soumis à une précipitation annuelle élevée (1 000 à 2 000 mm); exposition à moyen terme (1 à 5 ans) pour les sites soumis à une précipitation annuelle très élevée (plus de 2 000 mm) ou à une ou plusieurs saisons de pluies abondantes.

2. Confiance

Faible : confiance limitée en ce qui concerne les conditions de fondation, les propriétés des stériles, les pressions piézométriques, la technique d'analyse ou les mécanismes d'instabilité potentiels. Paramètres d'entrée mal définis ou optimistes; grande variabilité des données. Pour les structures projetées, recherches au niveau conceptuel avec des données complémentaires limitées. Pour les structures existantes, historique de construction et d'exploitation mal documenté ou inconnu; absence de fiches de suivi; historique de performances inconnu ou faible.

Modérée : confiance modérée en ce qui concerne les conditions de fondation, les propriétés des stériles, la pression piézométrique, la technique d'analyse ou les mécanismes de rupture potentiels. Paramètres d'entrée définis de manière adéquate; variabilité modérée des données. Pour les structures projetées, recherches au niveau de l'étude de préfaisabilité avec des données complémentaires adéquates. Pour les structures existantes, des fiches de suivi et une documentation de construction raisonnablement complètes; un historique de performances correct.

Élevée : confiance élevée en ce qui concerne les conditions de fondation, les propriétés des stériles, les pressions piézométriques, la technique d'analyse et le ou les mécanismes d'instabilité. Paramètres d'entrée bien définis, prudents; faible variabilité des données. Pour les structures projetées, recherches au niveau de l'étude de faisabilité avec des données complémentaires complètes. Pour les structures existantes, dossiers de construction et de suivi bien documentés ainsi que bon historique de performances.

Compte tenu des conditions existantes de la halde à stériles (c'est-à-dire pentes générales de moins de 25° et hauteur inférieure à 100 m) et de son emplacement (la halde à stériles n'est pas située près d'une infrastructure essentielle), les conséquences d'une rupture peuvent être considérées comme « faibles ». En outre, en raison des données limitées concernant les conditions de fondation, les propriétés des stériles et les conditions piézométriques, un niveau de confiance faible est attribué aux données. Par conséquent, le facteur de sécurité minimal requis en condition statique est fixé à 1,3 (voir le tableau 1).

3 STABILITÉ DE LA HALDE À STÉRILES

Des analyses de stabilité en condition d'équilibre limité ont été réalisées pour la halde à stériles à l'aide du programme Rocscience Slide2®, version 9.008 en appliquant la méthode Sarma. La méthode Sarma a été choisie parce qu'elle fournit le facteur de sécurité le plus conservateur par rapport aux autres méthodes de modélisation (c'est-à-dire Morgenstern Price, Bishops et Spencer). Des sections représentatives ont été sélectionnées pour l'évaluation basée sur une modélisation numérique 2D : la section B-B' et la section C-C'. Elles ont été choisies parce qu'il s'agit de sections critiques : la section avec la pente de fondation la plus raide (section B-B') et la section la plus proche du bassin de récupération d'eau (section C-C'). La section A-A' n'a pas été évaluée, car aucune déposition de stériles n'a encore eu lieu dans cette zone. Les sections sont présentées à l'annexe A.

Les valeurs d'entrée des propriétés des stériles et des sols en fondation sont détaillées au tableau 6 de l'annexe B avec les résultats de l'évaluation de la stabilité. Les figures des modèles de stabilité et les résultats sont fournies à l'annexe C.

Pour toutes les évaluations, la surface piézométrique est située au niveau de la surface avant l'exploitation minière (terrain naturel) afin d'envisager le pire scénario (c'est-à-dire une surface piézométrique qui coïncide avec la surface avant l'exploitation minière). Afin de comparer le profil de halde à stériles existant avec le profil à l'état final (fin de vie de la mine), les modèles de profils à l'état final ont été modifiés pour correspondre à l'élévation actuelle des deux sections.

Cette évaluation a été uniquement réalisée pour des conditions statiques. Un résumé des résultats des facteurs de sécurité est présenté ci-dessous au tableau 2.

Selon le site Internet de Ressources naturelles Canada (RNCan) (https://earthquakescanada.nrcan.gc.ca/hazard-alea/zoning-zonage/NBCC2015maps-fr.php), le site se trouve dans une zone présentant un niveau relativement faible de risque sismique par rapport aux autres régions du Canada. WSP pense qu'une évaluation de la stabilité dans des conditions pseudo-statiques (sismiques) n'est pas nécessaire pour les conditions d'exploitation. Cependant, il est recommandé de réaliser une analyse pseudo-statique pour les pentes à la fermeture.

Tableau 2 Résultats de la modélisation numérique en équilibre limite (Slide2©)

Cas ^(a)	Section	Condition de la halde à stériles	FS
13	Section B-B'	LiDAR actuel 2021	1,43
14	Section B-B'	Cycle de vie de la mine modifié pour correspondre à l'élévation actuelle	1,41
15	Section C-C'	LiDAR actuel 2021	1,46
16	Section C-C'	Cycle de vie de la mine modifié pour correspondre à l'élévation actuelle	1,32

Note: a) Les numéros de cas correspondent aux numéros de cas de l'étude précédente (WSP, 2020).

Pour les entrées sélectionnées, le facteur de sécurité est supérieur au critère établi dans le cadre des critères d'acceptation. Concernant la section B-B' et la section C-C', le facteur de sécurité est supérieur pour la condition 2021 actuelle en comparaison à celle de la fin de vie de la mine modifié pour correspondre à la hauteur actuelle de la halde. Concernant la section B-B', cela est dû au changement de volume, qui est plus élevé dans le cycle de vie de la mine modifié pour correspondre à la hauteur actuelle. Concernant la section C-C', cela est probablement dû à un angle de pente plus raide dans le cycle de vie de la mine modifié pour correspondre au modèle de hauteur actuel.

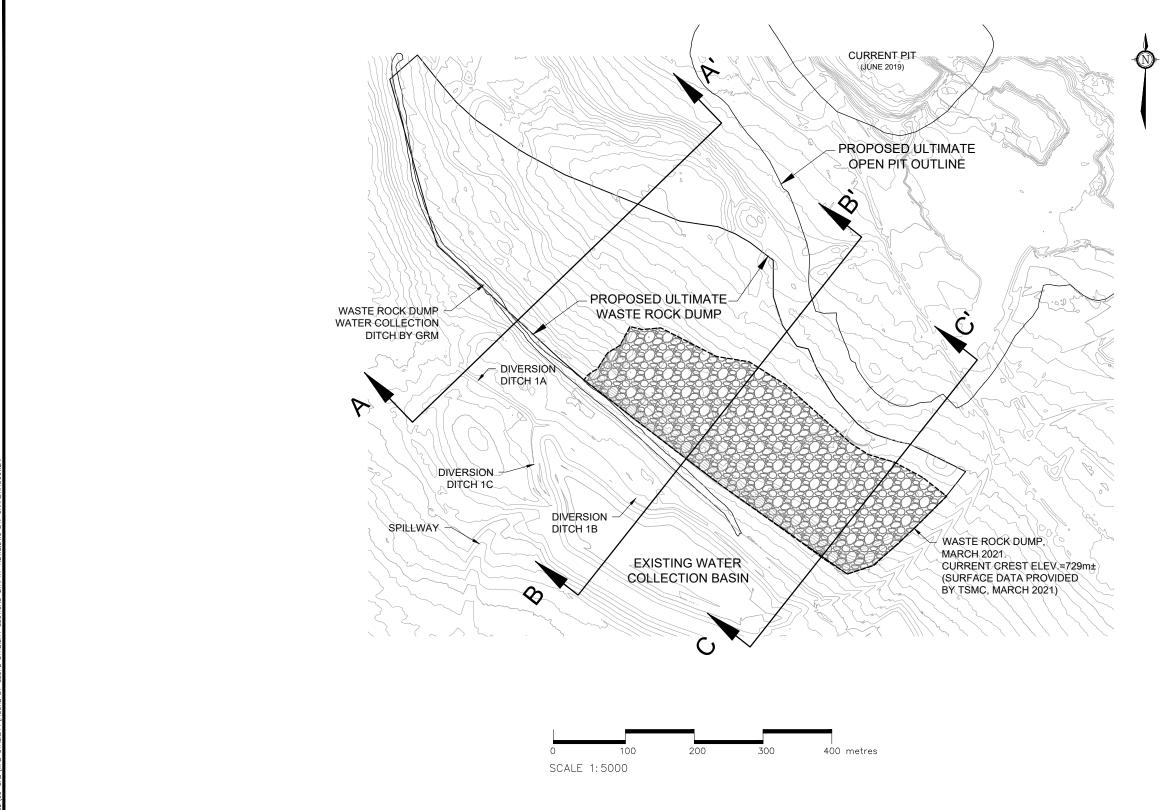
4 CONCLUSION ET RECOMMANDATIONS

TSMC a demandé à WSP de mener une évaluation de la stabilité sur les profils actuels de la halde à stériles en 2021. WSP a réalisé l'évaluation et l'a comparée au profil de cycle de vie de la mine de 2020 modifié pour correspondre à l'élévation actuelle.

La modélisation en équilibre limite menée à bien sur les deux sections a estimé que le facteur de sécurité était supérieur aux critères acceptables recommandés pour les deux sections.

PRÉPARÉ PAR

Version originale anglaise signée par :	Version originale anglaise signée par :
Hamed Hosseini, M. Ing. Spécialiste en mécanique des roches	Darlene Nelson, B. Sc. P.Eng. (ON) Ingénieure principale en mécanique des roches
/ÉRIFIÉ PAR	
Jean-Sébastien Houle, ing. (No 129263) Chef d'équipe, mécanique des roches	
CB/JSH/cg	


RÉFÉRENCES

- HAWLEY, M. et CUNNING, J. (2017). Guidelines for Mine Waste Dump and Stockpile Design. CSIRO Publishing.
- WSP. (novembre 2020) Goodwood Waste Dump Stability Assessment DRAFT (for comment), memorandum préparé pour Tata Steel Mineral Canada, nº de réf. 181-04013-91-MEM-01-R0, 5 p. + annexes.

ANNEXE A

Figures (anglais seulement)

1135 BOULEVARD LEBOURGNEUF, QUEBEC (QUEBEC) CANADA EL: 418 623-2254 | FAX: 418 624-1857

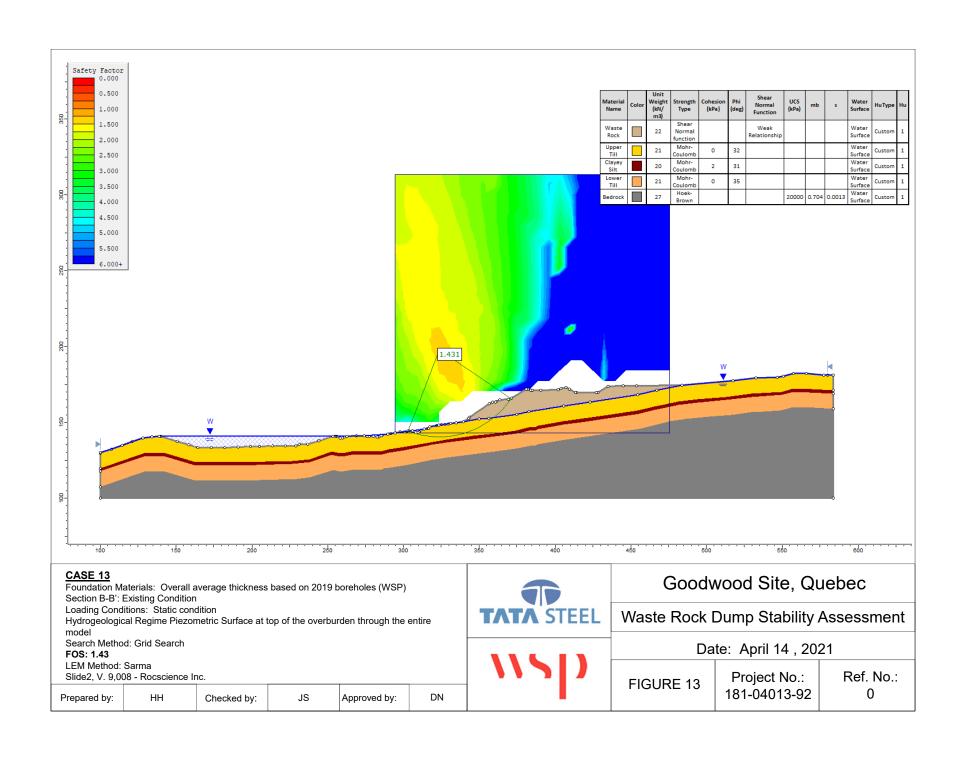
NOTES:

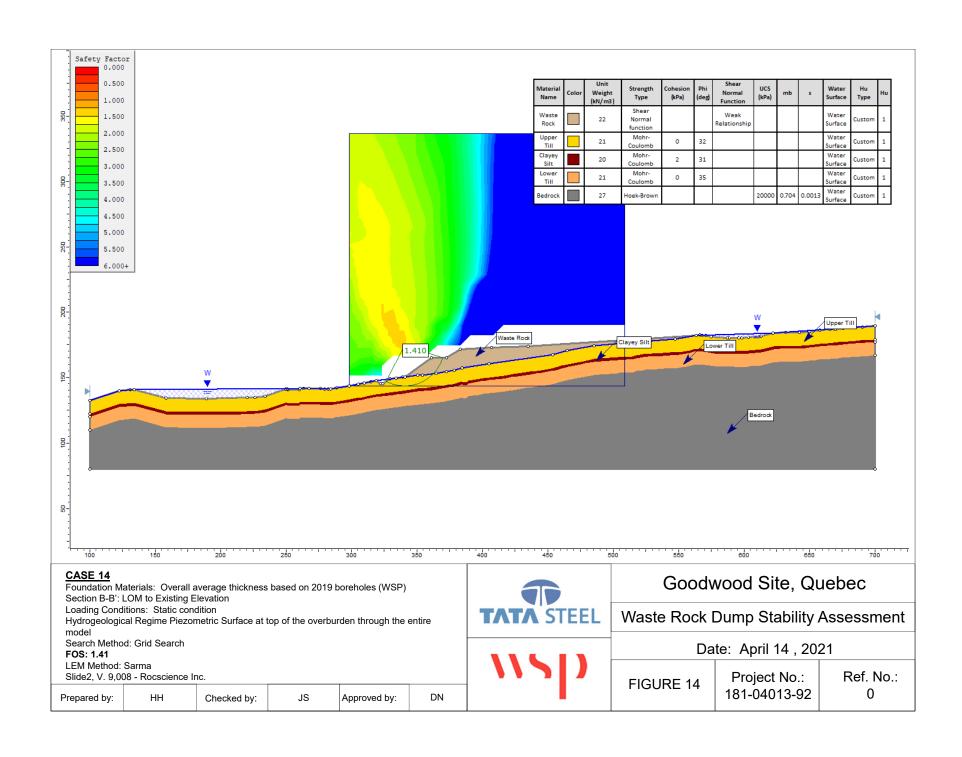
- 1. WASTE ROCK DUMP PLAN PROVIDED BY TSMC, 2020.
- 2. LiDAR DATA OF CURRENT SITE SURFACE PROVIDED BY TSMC, MARCH 2021.

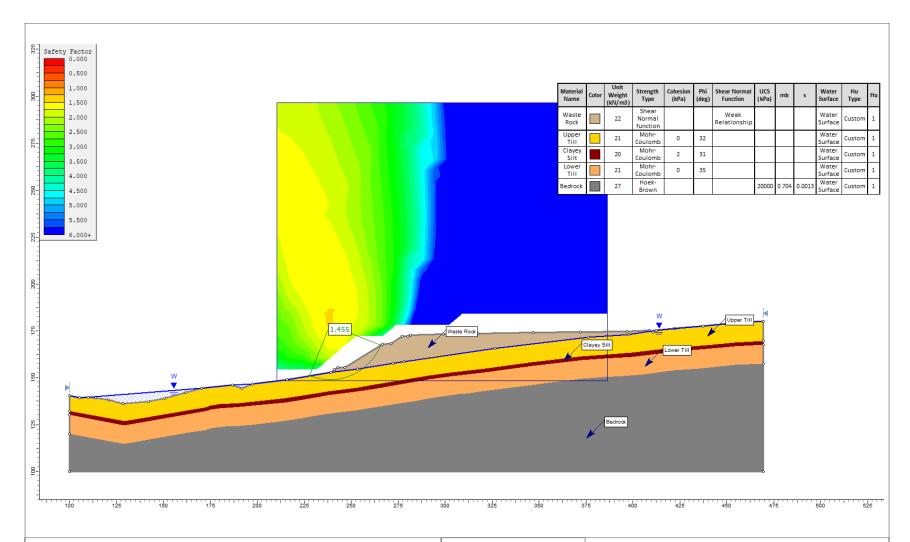
GOODWOOD - TATA STEEL MINERALS CANADA WASTE ROCK DUMP

LOCATION OF STABILITY SECTIONS FOR THE WASTE ROCK DUMP

PROJECT NO:	181-04013-92 REVISION:	DRAFT ISSUE 2
SCALE:	AS SHOWN (11X17)	APRIL 7, 2021
DRAWN BY:	G.HOOGWERF	
CHECKED BY:	D.NELSON FIGURE NO:	
APPROVED BY:	J.S.HOULE	FIGURE A1


3\181-04013-03 TSMC-GC

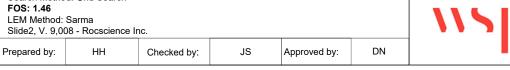

AST EDITED: 4/7/2021 8:50 AM



ANNEXE B

Analyses en équilibre limite – Slide2® (anglais seulement)

CASE 15

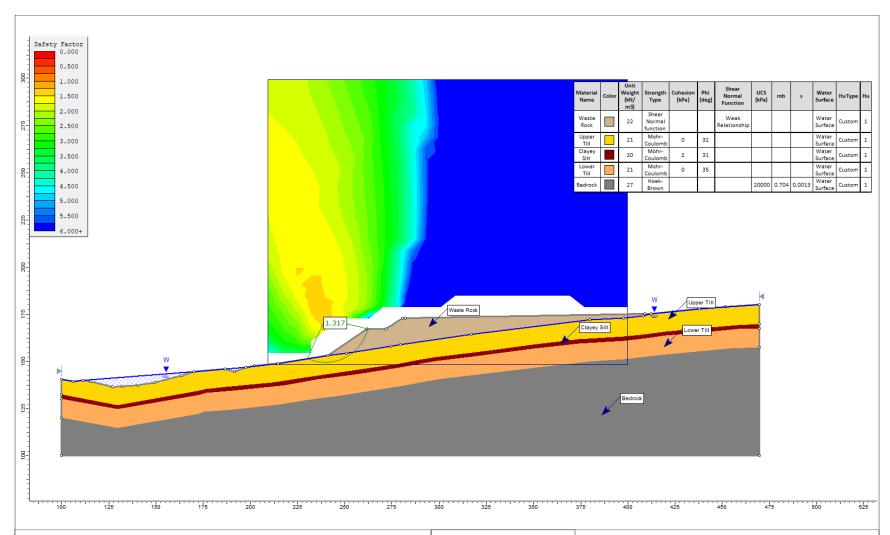

Foundation Materials: Overall average thickness based on 2019 boreholes (WSP)

Section C-C': Existing Condition Loading Conditions: Static condition

Hydrogeological Regime Piezometric Surface at top of the overburden through the entire

model

Search Method: Grid Search


Goodwood Site, Quebec

Waste Rock Dump Stability Assessment

Date: April 14, 2021

FIGURE 15

Project No.: 181-04013-92 Ref. No.:

<u>CASE 16</u>
Foundation Materials: Overall average thickness based on 2019 boreholes (WSP)

Section C-C': LOM to Existing Elevation Loading Conditions: Static condition

Hydrogeological Regime Piezometric Surface at top of the overburden through the entire

model

Search Method: Grid Search

FOS: 1.32

LEM Method: Sarma

Slide2, V. 9,008 - Rocscience Inc.

DN Prepared by: ΗН JS Approved by: Checked by:

Goodwood Site, Quebec

Waste Rock Dump Stability Assessment

Date: April 14, 2021

FIGURE 16

Project No.: 181-04013-92 Ref. No.:

ANNEXE C

Tableaux de conception géotechnique (anglais seulement)

Project: Goodwood, Quebec 181-04013-92

Title: Waste Rock Dump Stability Assessment

Level of Study:
Date:
Feasibility Study
14-Apr-21

Rev: 0

Waste Dump and Stockpile Stability Worksheets

Table 1:Input ParametersTable 2:Acceptance CriteriaTable 3:Seismic ParametersTable 4:Surface ProfileTable 5:Input Parameters

 Table 6:
 Limited Equilibrium Numerical Modelling Results

Project: Goodwood, Quebec

Project No: 181-04013-92

Title: Waste Rock Dump Stability Assessment

Level of Study: Feasibility Study
Date: 2021-04-14

Rev: 0

Table 1 - Data Sources

Sources:

Geotechnical Information on Foundation (soil and rock): WSP 2020. *Geotechnical Investigation, Goodwood Basin and Waste Rock Dump*. Report Prepared for Tata Steel Minerals Canada Ltd. WSP ref: 181-04013-13-RPT-01-R0, 10 p. + Appendices Engineering Brief: WSP, June 2020. Goodwood - Retention Pond - Dyke Crack Assessment ref: 181-04013-14, 14p. + Appendices Strength Parameters for Waste Rock Dump Material: Leps, T. M. (1970). "Review of Shearing Strength of Rockfill". Journal of Soil Mechanics & Foundations Div.

Seismic Hazard: Government of Canada, Seismic Risk Hazard Site, https://earthquakescanada.nrcan.gc.ca/hazard-alea/zoning-Goodwood Pit - Geotechnical Design Parameters for Year 1 Open Pit and Waste Dump, WSP 2016 ref: Report No. 131-21244-00 +Appendices

Goodwood Site Visit/Validation of Pit Geotechnical Design Input Parameters Memo Report, WSP February 2018.

ref:131-21244-00_MEM-01_R1

Project: Goodwood, Quebec

Project No: 181-04013-92
Title: Waste Rock Dump Stability Assessment

Date: April 14, 2021

Rev: 0

Table 2 - Factor of Safety Acceptance Criteria Values for Waste Rock Dumps and Stockpiles (after Hawley and Cunning, 2017)

		Static Analysis		Pseudo-Static Analysis	
Consequence ^{1,3}	Confidence ^{2,3}	Minimum FoS	Maximum PoF ⁴	Minimum FoS	Maximum Allowable Strain ⁴
	Low	1.3 to 1.4	10-15%	1.05 to 1.1	≤1%
Low	Moderate	1.2 to 1.3	15-25%	1.0 to 1.05	≤1.5%
	High	1.1 to 1.2	25-40%	1.0	≤2%
	Low	1.4 to 1.5	2.5-5%	1.1 to 1.15	≤0.75%
Moderate	Moderate	1.3 to 1.4	5-10%	1.05 to 1.1	≤1%
	High	1.2 to 1.3	10-15%	1.0 to 1.05	≤1.5%
	Low	≥1.5	≤1%	1.15	≤0.5%
High	Moderate	1.4 to 1.5	1-2.5%	1.1 to 1.15	≤0.75%
	High	1.3 to 1.4	2.5-5%	1.05 to 1.1	≤1%

Notes:

1. Consequence

Low - waste dumps and stockpiles will overall fill slopes less than 25° and less than 100 m high and repose angles slopes less than 50 m high. No critical infrastructure or unrestricted access within potential runout shadow. Limited potential for environmental impact. Long-term (more than 5 years) exposure for sites subject to very low to low (less than 350 mm) annual precipitation; medium-term (1-5 years) exposure for sites subject to moderate (350-1000 mm) annual precipitation; short-term (less than 1 year) exposure for sites subject to high (1000-2000 mm) annual precipitation; dry season construction/operation only for sites subject to very high (more than 2000 mm annual precipitation or intensive rainy season(s).

Moderate - waste dumps with overall fill slopes less than 30° and less than 250 m high or repose angle slopes less than 100 m high. No critical infrastructure or unrestricted access, or robust containment/mitigative measures to protect critical infrastructure and access within potential runout shadow. Potential for moderate environmental impact, but manageable. Long-term (more than 5 years) exposure for sites subject to moderate (350-1000 mm) annual precipitation; medium-term (1-5 years) exposure for sites subject to high (1000-2000 mm) annual precipitation; short-term (less than 1 year) exposure for sites subject to very high (more than 2000 mm) annual precipitation or intensive rainy season(s)

High - waste dumps with overall fill slopes more than 30° and more than 250 m high, or with repose angle slopes more than 200 m high. Critical infrastructure or unrestricted access within potential runout shadow with limited runout mitigation/containment measures. Potential for high environmental impact that would be difficult to manage. Long-term exposure (more than 5 years) for sites subject to high (1000-2000 mm) annual precipitation; medium-term (1-5 years) exposure for sites subject to very high (more than 2000 m) annual precipitation or intensive rainy season(s).

2. Confidence

Low - limited confidence in foundation conditions, waste material properties, piezometric pressures, analysis technique or potential instability mechanisms(s). Poorly defined or optimistic input parameters; high data variability. For proposed structures, investigations at the conceptual level with limited supporting data. For existing structures, poorly documented or unknown construction and operational history; lack of monitoring records; unknown or poor historical performance.

Moderate - moderate confidence in foundation conditions, waste material properties, piezometric pressure, analysis technique or potential failure mechanism(s). Input parameters adequately defined; moderate data variability. For proposed structures, investigations at the pre-feasibility study level with adequate supporting data. For existing structures, reasonably complete construction documentation and monitoring records; fair historical performance.

High - high confidence in foundation conditions, waste material properties, piezometric pressures, analysis technique and instability mechanism(s). Well-defined, conservative input parameters; low data variability. For proposed structures, investigations at the feasibility study level with comprehensive supporting data. For existing structures, well-documented construction and monitoring records and good historical performance.

- 3. In cases where the guidance for consequence or confidence conflicts or is unclear, selection of the appropriate level should be based on judgements and the rationale for the selection should be documented.
- 4. A simplified and conservative estimate of the potential displacement or deformation that may occur during a seismic event may be obtained using a variety of methods (e.g. Newmark 1965, Swaisgood 2003). For the purposes of these acceptance criteria, displacement or deformation estimates derived using these methods can be converted to an 'equivalent' strain by dividing the estimated cumulative displacement or deformation by the length of the critical failure path and expressive the results as a percentage. If the length of the critical failure path is unknown or not easily obtainable, the overall slope length or height of the embankment can be used as a conservative estimate for the length of the critical failure path is necessary before the cumulative displacement can be calculated. A non-convergence numerical model would not meet the acceptance criteria.

Project: Goodwood, Quebec

Project No: 181-04013-92

Title: Waste Rock Dump Stability Assessment

Level of Study: Feasibility Study 2021-04-14

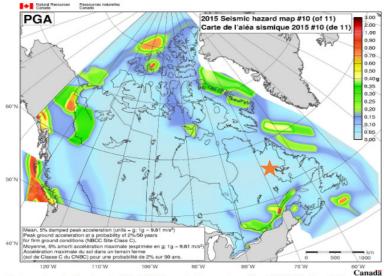

Rev: 0

Table 3 - Summary of Probabilistic Seismic Hazard Analysis

Exposure Time (years)	Probability of Exceedance (%)	Peak Ground Acceleration PGA (g)	Return Period
50 Years	40	0.003	208
50 Years	10	0.012	475
50 Years	5	0.019	975
50 Years	2	0.034	2475

Notes:

Source: Government of Canada, Seismic Risk Hazard Site, https://earthquakescanada.nrcan.gc.ca/hazard-alea/zoning-zonage/NBCC2015maps-en.php

Peak ground acceleration at a probability of 2%/50 years for firm ground conditions (NBCC Site Class C). Peak acceleration is contoured in g.

Project: Goodwood, Quebec

Project No: 181-04013-92

Title: Waste Rock Dump Stability Assessment

Level of Study: Feasibility Study
Date: 2021-04-14

Rev: 0

Table 4a - Waste Dump Profile Parameters

Lift	Bench Height (m)	Overall Waste Dump Height (h) (m)	Face Angle - Design (°)	Face Angle from Slide2 Model (°)	Berm Width (m)	Comments
1	14.5	14.5	28	36	11.4	
2	15	29.5	34	33	10.1	
3	15	44.5	33	33	10.1	
4	10	54.5	33	33	n.a.	

Source:

2019 LIDAR survey and 2020 ditch survey provided by TSMC in June 2020 for existing profile.

Waste Dump design as provided by Tata Steel and modified by WSP to incorporate a runoff collection ditch along the downstream toe that drains to the pond.

Notes:

Table 4b - Ground Water Depth and Elevation in Boreholes from Geotechnical Investigation Report (WSP, 2020)

Borehole No.	Piezometer Toe Depth (mbgs)	Ground Surface Elevation (m)	Ground Water Depth (mbgs)	Ground Water Elevation (m)	Date of Reading
19-BH-02 (#1)	14.9	695.81	Dry	Dry	September 22, 2019
19-BH-02 (#2)	11.0	695.81	Dry	Dry	September 22, 2019
19-BH-04 (#1)	14.0	683.21	Dry	Dry	September 22, 2019
19-BH-04 (#2)	9.1	683.21	Dry	Dry	September 22, 2019
19-BH-05 (#1)	14.0	681.36	6.34	675.02	September 22, 2019
19-BH-05 (#2)	8.5	681.36	6.19	675.17	September 22, 2019
19-BH-06	0.8	685.44	4.88	680.56	September 22, 2019

Notes:

The minimum ground water level from Table 4b for borehole 19-BH-06 is used as hydrogeological condition for various scenarios. Note that these readings does not represent seasonal data so other hydrogeological scenarios are considered to test for sensitivity.

1151)

Client: Tata Steel Minerals Canada

Project: Goodwood, Quebec

Project No: 181-04013-92

Title: Waste Rock Dump Stability Assessment

Level of Study: Feasibility Study
Date: 14-Apr-21

Rev: 0

Table 5 - Input Parameters for Waste Dump Stability

Material	g _b (a,b) (Bulk Unit Weight)	f' ^(a,b) (Friction Angle)	c' ^(a,b) (Cohesion) (kPa)	Thicknes	ss (m) ^(c)
	(kN/m³)	(degrees)		Average	Maximum
Rockfill	19	Shear Normal Function Leps - Weak		see profile	see profile
Upper Till	21	32	0	10.3	14.6
Clayey Silt	20	31	2	2.1	2.4
Lower Till	21	35	0	10.0	17.7

Notes:

- a) Input parameters for Upper Till, Clayey Sand and Lower Till are based on retention pond stability analysis (WSP, June 2020)
- b) Unit weight of rockfill and bedrock input parameters were extracted from geotechnical design parameters for Year 1 Open Pit and Waste Dump Report (WSP, 2016). The following unit weight and Hoek-Brown input parameters for the bedrock is assumed: Unit Weight (g_b) = 27 kN/m³, Unconfined Compressive Strength (UCS) = 20000 kPa, m_b = 0.704 and s = 0.0013.
- c) Overburden average and maximum thicknesses are based on the borehole logs from the geotechnical investigation report (WSP, 2020)
- d) Rockfill quality is assumed to be weak rocks with low durability and fines (% passing No. 200 sieve) content above 25% and verified in waste dump sampling completed by TSMC and tested by WSP, 2020

Project: Goodwood, Quebec Project No: 181-04013-92

Title: Waste Rock Dump Stability Assessment

Level of Study
Date:
Rev:
Feasibility Study
14-Apr-21
0

Table 6 - Limit Equilibrium Results

				Geotechnical Inputs		Hydrogeological Conditions				
Scenario	Model - Surface Type - Search Method - Load	Overburden Thickness (m)	Parameter	Upper Till (a,b)	Clayey Silt (a,b)	Lower Till (a,b)	Parameters (c,d)	(e)	F.O.S.	Description of failure
13	Existing (March, 2021) Section B-B' Sarma Method Surface type: Circular Search: Grid Search Seismic load: none	22.4	γb (kN/m²) Strength Type φ' (°) c' (kPa) Average Thickness (m)	Mohr-Coulomb 32 0 10.3	20 Mohr-Coulomb 31 2 2.1	Mohr-Coulomb 35 0	Shear/Normal Function Leps - Weak Leps - Weak See profile	Piezometric line at ground surface	1.43	Failure predicted at 7.3 m from the edge of the crest of the first lift through the Upper Till layer and exits 36.7 m from the Toe.
14	LOM to Existing Elevation (March, 2021) Section B-B' Sarma Method Surface type: Circular Search: Grid Search Seismic load: none	22.4	γb (kN/m³) Strength Type φ' (°) c' (kPa) Average Thickness (m)	21 Mohr-Coulomb 32 0 10.3	20 Mohr-Coulomb 31 2 2.1	21 Mohr-Coulomb 35 0	22 Shear/Normal Function Leps - Weak Leps - Weak See profile	Piezometric line at ground surface	1.41	Failure predicted at 8.7 m from the edge of the crest of the first lift through the Upper Till layer and exits in the wall of ditch.
15	Existing (March, 2021) Section C-C' Sarma Method Surface type: Circular Search: Grid Search Seismic load: none	22.4	γb (kN/m³) Strength Type φ' (°) c' (kPa) Average Thickness (m)	Mohr-Coulomb 32 0 10.3	20 Mohr-Coulomb 31 2 2.1	Mohr-Coulomb 35 0 10	Leps - Weak Leps - Weak See profile	Piezometric line at ground surface	1.46	Failure predicted at the slope of the first lift through the Upper Till layer and exits 11.5 m from the Toe.
16	LOM to Existing Elevation (March, 2021) Section C-C' Sarma Method Surface type: Circular Search: Grid Search Seismic load: none	22.4	γb (kN/m³) Strength Type φ' (°) c' (kPa) Average Thickness (m)	21 Mohr-Coulomb 32 0 10.3	20 Mohr-Coulomb 31 2 2.1	21 Mohr-Coulomb 35 0	22 Shear/Normal Function Leps - Weak Leps - Weak See profile	Piezometric line at ground surface	1.32	Failure predicted at 0.5 m from the edge of the crest of the first lift through the Upper Till layer and exits 10.8 m from the Toe.

NOTES:

- a) Overburden average and maximum thickness are based on the borehole logs from the geotechnical investigation report (WSP, 2020)
- b) Geotechnical input parameters are from Table 5.
- c) Unit weight of rockfill and bedrock input parameters were extracted from geotechnical design parameters for Year 1 Open Pit and Waste Dump Report (WSP, 2016) for scenarios 1 to 6. The following unit weight and Hoek-Brown input parameters for the bedrock is assumed: Unit Weight (g_b) = 27 kN/m³, Unconfined Compressive Strength (UCS) = 20000 kPa, m_b = 0.704 and s = 0.0013.
- d) Unit weight of rockfill and bedrock input values were extracted from Goodwood Site Visit/Validation of Pit Geotechnical Design Input Parameters Memo (WSP, 2018) for scenarios 7 to 12. Bedrock Unit Weight (g_b) = 31 kN/m³ is assumed for scenarios 7 to 12.
- e) The water level for scenarios 1,2 and 4 is based on the water level readings on September 22, 2019 from geotechnical investigation report (WSP, 2020). The minimum water level is considered for this study.
- f) F.O.S are from Slide2, Sarma Interslice Strength Option: Computed Average Value, Limit Equilibrium Analysis Program (Rocscience)
- g) Water table is as per Hydrogeological scenarios.

Appendix XIV. WSP geotechnical monitoring report

wsp	RAPPORT D'INSPECTION			Révis	Révision 00	
Client :	Tata Steel Mineral Canada	Ltd. (TSMC)	Réf. Client :	s.o.		
Site :	Goodwood, Québec, Cana	ıda	Réf. WSP :	181-04013-94	4	
Projet :	Inspection géotechnique 2	021	Météo :	cf. section «A	ctivité(s)»	
Inspecteur.trice :	Louise Chaput, ing. (OIQ,	n°. 109191)	Date de l'inspectior	: 2021-06-24, 2	26 et 27	
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°	°. 111186)	Date du rapport :	2022-03-31		
F	Ressource	Compagnie	Commenta	ires		
Jean-Fr	ançois Dion (JFD)	TSMC	Guide; référence;	conducteur		
Louise	Chaput, ing. (LC)	WSP	Inspectri	се		
Mariana T	rindade, PhD (MT)	TSMC	Gestionnaire des questions	environnement	ales	
Date; heure	Activité(s)					
24-juin	Arrivée au site; conditions	météorologiques : pluvie	eux et venteux; 9 °C.			
12 h 30 à 14 h			n, jusqu'au déversoir, avec quelq ur au véhicule, balade au pied de	•	sur le	
25-juin	Arrivée au site; conditions	météorologiques : nuage	eux et venteux: 10 °C.			
12 h 30 à 14 h	Marche sur la digue média	ne du bassin, puis sur la	digue nord en direction ouest et eure et les fossés extérieurs.	retour par la dig	ue sud.	
26-juin	Arrivée au site; conditions	météorologiques : ciel va	ariable et venteux; ≈20 °C.			
12 h 30 à 14 h	digues, dépressions sur le	dessus des digues, plac ion de la digue sud et de	voir un relevé complet du bassin, ques de tassement, etc. Dégagem la fin de la rampe, pour découvri dimentation.	ent manuel de		
28-juin	Arrivée au site; conditions	météorologiques : varial	ole à ensoleillé; ≈20 °C.			
9 h à 12 h			s à mort terrain et de la fosse à c	el ouvert.		
Limitations :	•		chniques des opérations de ce site			
Secteur	audit. Le mandat est de tout Observations principales				Photo n°	
	Intérieur du bassin :	passin est bas : l'eau est	pompée de l'amont vers l'aval de	la digue	1	
	Digue sud : la superficie d'été 2018. Préoccupation : modérée		erte sur la pente amont (interne) a	triplé depuis	2 et 3	
	Digue sud : une nouvelle déversoir d'urgence. Préoccupation : modérée	·	sur la partie interne de la crête, _l	orès du	4	
Bassin de sédimentation	déchirures dans la géomer	mbrane sur une longueu	val de la digue médiane, pour déc r d'environ 2 m. chirures de fond ou de talus.	ouvrir des	5 et 6	
	Digue médiane : Dépress matériel constitutif du cœu Préoccupation : faible.		digue, probablement causé par u	n tassement du	7	
	· ·	présentent un état avar	du bassin est variable; après qua ncé de dégradation, laissant parfo		8	
Halde à stériles	Pied de la halde, secteur - Résurgence causant un d - Érosion de surface entre	début d'érosion.	ssé menant au bassin de sédime	ntation	9 et 10	

Préoccupation : faible.

1150	RAPPORT D'INSPECTION Rév			sion 00		
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.			
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94			
Projet :	Inspection géotechnique 2021	Météo :	cf. section «A			
nspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :		26 et 27		
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	2022-03-31			
Secteur	Observations principales / préoccupations / com	mentaires (suite)		Photo n°		
	Talus Sud, portion est : - Plusieurs décrochements de surface visibles; - Les décrochements de surface génèrent des sédim Notons que les pentes sont fortes et que l'exploitant adoucies. Préoccupation : faible.			11 et 12		
Halde à stériles	Talus ouest : En crête de talus, des fissures sont pr cavités d'infiltration d'eau sont présente, avec signes Préoccupation : faible.		ité et des	13		
(suite)		mmet (plateau) de la halde : ucune stratégie de drainage des eaux de surface. issure de tassement à la suite l'assèchement visible. Des renfoncements avec trous d'infiltration des eaux de surface sont visibles.				
	Crête : des fissures de tensions provoquées par les décrochements de surface (voir observations ci-dessus) sont visibles à divers endroits. Préoccupation : faible.					
	Fossé à l'est de la halde vers le bassin : Trois zones où le géotextile de séparation est visible. Préoccupation : modérée.					
Fossés et ponceaux	Fossé entre la halde et le bassin de sédimentation : - Géotextile de séparation visible à plusieurs endroits - Trou d'infiltration d'eau de surface (renard), juste de sous le fossé. Préoccupation : modérée			18 et 19		
	Ponceau à l'entrée de la halde : - Fossé est bouché à l'est - Le côté ouest est brisé Préoccupation : modérée.			20 et 21		
Faces & siel according	Aucun mur final depuis l'an passé. Exploitation au même niveau que l'an passé (pas plu	ıs profond)		S.O.		
Fosse à ciel ouvert	Présence de signe d'érosion autour de la fosse partice Préoccupation : faible.	culièrement le long du mur nord		22 et 23		
Halde à mort terrair	Les talus sont généralement en bonnes conditions avec des signes d'érosions localisés à quelques endroits comme observés l'an dernier probablement dus à une mauvaise stratégie de drainage sur les zones planes.					
	Présence de flaque d'eau aux abords de la Halde No Préoccupation : faible.	ord.		24		
Secteur	Actions recommandées			Photo n°		
	Digue sud : procéder aux travaux de réparation selo	on kles plans et devis développés	par WSP.	2 à 6		
Bassin de sédimentation	Digue médiane (temporaire) : pas de travaux de ré démantelée dans le contexte des travaux de réparati	on.		7		
	Général : dans les secteurs où les travaux de répara l'empierrement s'est dégradé significativement et des des problèmes et ajouter de l'empierrement de bonn	s tassements sont apparus, valid		8		

wsp	RAPPORT D'INSPECTION			ion 00	
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	S.O.		
Site :	Goodwood, Québec, Canada Réf. WSP: 181-04013-94				
Projet :	Inspection géotechnique 2021	Météo :	cf. section «A	ctivité(s)»	
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 2	26 et 27	
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	2022-03-31		
Secteur	Actions recommandées (suite)			Photo n°	
	Résurgence et érosion en pied du talus sud : Suivre l'évolution les fossés existants au besoin	et aménager des er	ntrées vers	9 et 10	
Halde à stériles	Talus sud et ouest : Documenter (photos et rapport) l'évolution des décrochements de surface et s'assurer que les permes de sécurité sont adéquates. Le profilage des talus est à prévoir selon les spécifications de l'étude géotechnique de WSP de 2017 lorsque le talus sus-jacent a atteint sa géométrie finale.				
	Sommet (plateau) : Mettre en place une stratégie de drainage en éloignant l'eau des crêtes de talus et en minimisant les zones de flaque qui peuvent accentuer voire générer les enfoncements				
Halde à stériles (suite)	Général : - Réaliser des inspections mensuelles documentées (rapport et photos) afin de noter l'évolution des éléments mentionnés dans ce rapport ainsi que toutes nouvelles situations - Réaliser un arpentage mensuel des zones actives et vérifier que la géométrie respecte de la conception				
	Fossés en général : réaliser un entretien au besoin en enlevant le ajoutant de l'empierrement où le géotextile est visible.	es sédiments accum	ulés et	17, 18 et 19	
Fossés et ponceaux	Fossés entre la halde à stériles et le bassin de sédimentation amont du fossé entre la halde et le bassin de sédimentation et rep estivale de 2022			19	
	Ponceaux : réparer ou remplacer les ponceaux endommagés et caval au besoin	dégager les fossés e	n amont et	20 et 21	
Fosse à ciel ouvert	Détourner l'afflux d'eau dans la fosse à ciel ouvert en mettant en œuvre/en améliorant le fossé			22 et 23	
Dans les zones inactives : - Améliorer le nivellement du sommet (plateau) pour empêcher l'eau de s'écouler sur les pent - Considérer la construction/implantation d'un canal d'eau bordé d'un matériau de protection d'halde à mort terrain l'érosion (ex. : empierrement) là où nécessaire.				24	
	Dans les zones actives : - Remodeler/niveler le sommet (plateau) loin des talus (ex. : vers l'arrière/l'entrée).				

SIGNATURES

Préparé par :

Louise Chaput, ing. (OIQ, n°. 109191) Bassin de sédimentation, halde à stériles et

fossés

Jean-Sébastien Houle, ing. (OIQ no. 129263) Fosse à ciel ouvert et halde à mort terrain

Autorisé et revue par les pairs :

Louise Chaputing.

Carl Gauthier, ing. (OIQ n°. 111186)

Chargé de projet

LC/JSH/CG/

P.j. : Annexe A - Rapport photographique

ANNEXE

A RAPPORT PHOTOGRAPHIQUE

wsp	RAPPORT PHOTOGRAPHIQUE	Révision 00	
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	1 de 12

Photo 1 : Bassin de sédimentation, vue générale (vue vers l'ouest)

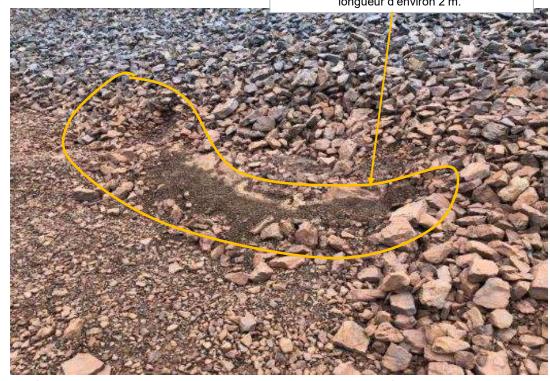


Photo 2 : Digue Sud, exemple d'une portion découverte de la membrane dans le talus interne

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

1150	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice:	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	2 de 12

Photos 5 et 6 : Déchirure dans la membrane du talus interne de la digue sud et dépression en haut du talus dans le même secteur

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date 2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date 2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date 2022-03-31

usb	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	3 de 12

Photo 3 : Digue Sud, exemple d'une portion découverte de la membrane dans le talus interne

Photo 4 : Digue Sud, une nouvelle dépression est observée sur la partie interne de la crête

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

1150	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	4 de 12

Photo 7 : Dépression dans le centre de la digue médiane

Photo 8 : Bassin de sédimentation, la qualité de l'empierrement à l'intérieur du bassin est variable; après quatre saisons, plusieurs roches présentent un état avancé de dégradation

	production of the production and that a value are an engineeration.			
Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date 2022-03-31		
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date 2022-03-31		
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date 2022-03-31		

usp	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	5 de 12

Photo 9 : Écoulement au pied de la halde à stérile, coin est, vers le fossé en aval

Photo 10 : Écoulement au pied de la halde à stérile, coin est.

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

1150	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice:	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	6 de 12

Photo 11 : Halde à stérile, Talus Sud, dans la portion est, plusieurs décrochements de surface sont visibles

Photo 12 : Halde à stériles, Talus Sud, les décrochements (c.f. photos 11) génèrent des sédiments en amont du fossé et dans le fossé

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date 2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date 2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date 2022-03-31

usp	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	7 de 12

Photo 13 : Halde à stérile, Talus Ouest, des fissures sont présentes sur les merlons de sécurité et des cavités d'infiltration d'eau sont présente, avec signes de tassements

Photo 14 : Halde à stériles, sommet (plateau), renfoncements avec trous d'infiltration des eaux de surface

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

1150	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	8 de 12

Photo 15 : Halde à stériles, sommet (plateau), fissures et trous d'infiltration des eaux de surface (secteur est)

Photo 16 : Halde à stériles, exemple de fissures en crête de talus

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

usp	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice:	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	9 de 12

Photo 17 : Fossé en amont du bassin de sédimentation, exemple d'une des trois zones où le géotextile est découvert

Photo 18 : Fossé entre la halde à stériles et le bassin de sédimentation, géotextile découvert à plusieurs endroits et sédiments dans le fossé.

	Scalificates datis ic 1035c.		
Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date 2022-03-31	
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date 2022-03-31	
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date 2022-03-31	

1151)	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	10 de 12

Photo 19 : Fossé entre la halde à stériles et le bassin de sédimentation, un trou d'infiltration d'eau de surface (renard), est visite devant le fossé.

Photo 20 : Le fossé est bouché, à l'est du ponceau à l'entrée de la halde

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

usp	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice:	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	11 de 12

Photo 21 : Le ponceau à l'entrée de la halde, côté ouest, est brisé

Photo 22 : Fosse à ciel ouvert, vue générale vers le sud-ouest

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

1151)	RAPPORT PHOTOGRAPHIQUE		Révision 00
Client :	Tata Steel Mineral Canada Ltd. (TSMC)	Réf. Client :	s.o.
Site :	Goodwood, Québec, Canada	Réf. WSP :	181-04013-94
Projet :	Inspection géotechnique 2021		
Inspecteur.trice :	Louise Chaput, ing. (OIQ, n°. 109191)	Date de l'inspection :	2021-06-24, 26 et 27
Chargé.e de projet :	Carl Gauthier, ing. (OIQ n°. 111186)	Date du rapport :	12 de 12

Photo 23 : Fosse à ciel ouvert, écoulement d'eau de surface à plusieurs endroits le long de la paroi nord

Photo 24 : Halde à mort terrain, présence de flaque d'eau aux abords de la halde

Préparé par :	Louise Chaput, ing. (OIQ, n°. 109191)	Date	2022-03-31
Préparé par :	Jean-Sébastien Houle, ing. (OIQ no. 129263)	Date	2022-03-31
Approuvé par :	Carl Gauthier, ing. (OIQ n°. 111186)	Date	2022-03-31

Appendix XV. COVID-19 announcement

Avis à la population

AVIS DE LA SANTÉ PUBLIQUE CONCERNANT L'AUGMENTATION DES CAS DE COVID-19 À KAWAWACHIKAMACH, SCHEFFERVILLE ET MATIMEKUSH-LAC JOHN

Le 22 décembre 2021 – Quatre nouveaux cas de COVID-19 sont enregistrés dans la communauté de Kawawachikamach. La situation est préoccupante et la Direction de santé publique de la Côte-Nord invite les résidents de Schefferville, Kawawachikamach et Matimekush-Lac John à faire preuve de vigilance et à suivre les recommandations ci-dessous :

- Si vous présentez des symptômes (fièvre, toux, essoufflement, mal de gorge, perte de goût ou de l'odorat) et que vous avez un test de dépistage rapide à la maison, utilisez-le. Si le test est positif, restez en isolement et appelez la clinique pour une confirmation. Si vous avez des symptômes et que le test est négatif, reprenez le test après 24 heures (lendemain)
- Restez chez vous sauf pour des déplacements essentiels (travail, épicerie, soins de santé)
- Évitez les déplacements dans une autre municipalité ou communauté
- Respectez les consignes d'isolement des cas de COVID-19 ou des contacts domiciliaires
- Suivez les recommandations du <u>protocole de gestion des entrées</u>. Les visiteurs et les étudiants qui reviennent doivent se faire dépister et respecter un confinement de 7 jours
- Évitez les rassemblements
- Faites-vous vacciner contre la COVID-19
- Pour les personnes âgées de 18 ans et plus, prenez rendez-vous pour recevoir une 3e dose de vaccin contre la COVID-19

Il est important de porter adéquatement un masque, de rester à 2 mètres des autres et de se laver fréquemment les mains.

Aidez-nous à protéger notre communauté contre la transmission du virus.

Merci de votre collaboration.

La Direction de santé publique de la Côte-Nord