

Suivi environnemental 2017 en phase exploitation

Aménagement hydroélectrique de la Sainte-Marguerite-3

Suivi des teneurs en mercure dans la chair des poissons

Aménagement hydroélectrique de la Sainte-Marguerite-3

Suivi environnemental 2017 en phase exploitation

Suivi des teneurs en mercure dans la chair des poissons

François Soforle

Version finale

Février 2019

Préparé par Chargé de projet

Bernard Massicotte Biologiste, M.Sc. WSP Canada Inc.

Date 14 mars 2019

Révisé par Responsable scientifique

Jean Therrien
Biologiste
WSP Canada Inc.

Date 14 mars 2019

Révisé et approuvé par Responsable scientifique François Bilodeau

Chargé de programme Mercure

Hydro-Québec

Date 14 mars 2019

Le présent rapport a été préparé à la demande d'Hydro-Québec, dans le contexte déterminé par les termes spécifiques du mandat accordé à WSP Canada Inc. par Hydro-Québec et selon l'entente intervenue entre les deux parties. Aucune copie en tout ou en partie de ce rapport ne peut être réalisée par un tiers sans le consentement explicite d'Hydro-Québec Production.

Référence pour fins de citation :

MASSICOTTE, B., THERRIEN, J., BILODEAU, F. 2019. Aménagement hydroélectrique de la Sainte-Marguerite-3. Suivi environnemental 2017 en phase exploitation. Suivi des teneurs en mercure dans la chair des poissons. Préparé pour Hydro-Québec. 42 p. et annexes. Version finale.

Mots clés: Suivi des teneurs en mercure, poissons, complexe hydroélectrique, centrale, barrage, rivière Sainte-Marguerite

Centre de documentation Environnement et collectivités: HQ-2019-008

Sommaire

Référence pour fins de citation :

MASSICOTTE, B., THERRIEN, J., BILODEAU, F. 2019. Aménagement hydroélectrique de la Sainte-Marguerite-3. Suivi environnemental 2017 en phase exploitation. Suivi des teneurs en mercure dans la chair des poissons. Préparé pour Hydro-Québec. 42 p. et annexes. Version finale.

Résumé:

Les teneurs en mercure dans la chair des poissons dans la région de l'aménagement hydroélectrique de la Sainte-Marguerite-3 font l'objet d'un suivi depuis l'année 2001. L'évolution de ces teneurs est évaluée par rapport à celles qui avaient été mesurées au cours des années 1992 à 1997 en conditions naturelles, dans la rivière Sainte-Marguerite et dans des lacs de la région. Depuis la mise en eau du réservoir de la Sainte-Marguerite 3, des suivis ont été réalisés au cours des années 2001, 2005, 2008, 2011 et 2014. L'année 2017 constitue donc le sixième suivi post-aménagement, soit 19 ans après le début de la mise en eau du réservoir qui s'est échelonnée de 1998 à 2002.

La présente étude vise à mettre à jour les teneurs en mercure dans la chair des poissons, afin de poursuivre la démarche de gestion du risque pour la santé des consommateurs de poissons de la région de la Sainte-Marguerite. L'étude de 2017 élargit la portée spatiale du suivi en incluant les secteurs situés à l'aval immédiat des réservoirs de la Sainte-Marguerite 2 et 3. Des campagnes d'échantillonnage ont ainsi été réalisées au cours de l'été 2017, selon la méthodologie couramment utilisée par Hydro-Québec pour ses autres aménagements hydroélectriques. Les espèces cibles visées par ce suivi incluent une espèce prédatrice, soit le grand brochet, de même qu'une espèce typiquement non prédatrice, le grand corégone. Des données supplémentaires ont été recueillies pour l'omble de fontaine.

Les données recueillies en 2017 montrent que les teneurs en milieu naturel n'ont pas varié significativement par rapport aux années précédentes. Au réservoir de la Sainte-Marguerite-3, les teneurs chez le grand corégone et le grand brochet avaient montré une diminution graduelle lors des suivis précédents, après une phase d'augmentation subséquente à la mise en eau. Cette diminution ne s'est cependant pas poursuivie en 2017. Les teneurs chez le grand corégone ont plutôt augmenté de façon significative entre 2014 et 2017, alors qu'elles se sont simplement maintenues dans le cas du brochet. Les teneurs de 2017 demeurent supérieures à celles observées en milieu naturel chez les deux espèces. L'arrêt de la phase de diminution en mercure ne serait pas lié à une gestion du réservoir à un niveau d'eau plus élevé qu'au cours des années précédentes, selon l'analyse des variations des niveaux d'eau des 13 dernières années.

Au réservoir de la Sainte-Marguerite 2, la teneur en mercure chez le grand corégone se situe à l'intérieur de celles des milieux naturels depuis 2011. Chez le grand brochet cependant, les concentrations demeurent supérieures à celles des milieux naturels et n'ont pas diminué entre 2014 et 2017.

Les résultats recueillis pour une première année à l'aval immédiat (< 2,5 km) des centrales montrent que les teneurs chez le grand brochet sont équivalentes à celles des réservoirs correspondants. Chez le grand corégone cependant, les teneurs étaient plus élevées à l'aval immédiat du réservoir de la Sainte-Marguerite 2 que dans le réservoir lui-même, ce qui pourrait être attribuable à un changement de régime alimentaire tel qu'observé dans d'autres complexes hydroélectriques.

En se basant sur les résultats de l'année 2017, les recommandations de consommation de poisson du Guide alimentaire des poissons et fruits de mer de la Côte-Nord ont été réévaluées. La plupart des recommandations en vigueur n'auraient pas à être modifiées. Font exception le grand corégone du réservoir de la Sainte-Marguerite 3, où la recommandation actuelle de huit repas par mois pourrait toutefois être abaissée à quatre repas par mois, alors qu'elle serait augmenté à 4 repas par mois en aval immédiat de la Sainte-Marguerite-3 et à 12 repas par mois et plus à l'aval immédiat de la Sainte-Marguerite-2, ainsi que l'omble de fontaine à l'aval immédiat de la Sainte-Marguerite-3, où la recommandation passerait de 2 à 8 repas par mois. Ces recommandations seront présentées et discutées avec les agences locales de santé publique pour approbation.

Hydro-Québec Production, Centre de documentation Environnement et collectivités HQ-2019-008

Équipe de réalisation

Hydro-Québec

Coordonnatrice du suivi environnemental Maude Richard-St-Vincent

Chargé de programme – Mercure François Bilodeau

WSP Canada Inc.

Directeur de projet Jean Therrien

Chargé de projet Bernard Massicotte

Analyse et rédaction Jean Therrien Bernard Massicotte

Collaboratrices Annie Bérubé Justine Létourneau

Travaux de terrain Dominique Cuerrier Stéphane Geissel Justine Létourneau Isabelle Lussier

Infographie Diane Gagné Maude Lehouillier-Viens

Éditique Linette Poulin

Table des matières

ÉQ	UIPE DE R	ÉALISATION	IX
1.	INTRODU	CTION	1
	1.1 Descr	iption sommaire de l'aménagement	1
	1.2 Engaç	gements et obligations	1
	1.3 Revue	e des études antérieures	3
2.	OBJECTIF	S ET ZONE D'ÉTUDE	5
	2.1 Objec	tifs	5
	2.2 Zone	d'étude	5
3.	MÉTHOD	DLOGIE	7
	3.1 Chron	ologie et stations échantillonnées	7
	3.2 Straté	gie d'échantillonnage	8
	3.2.1	Espèces cibles et incidentes	8
	3.2.2	Campagnes d'échantillonnage	8
	3.3 Mesui	es et prélèvements sur les poissons	10
	3.3.1	Caractéristiques biologiques	10
	3.3.2	Prélèvement des échantillons de chair et des structures anatomiques	10
	3.3.3	Contenu stomacal	10
	3.3.4	Différenciation des grands corégones de forme naine	11
	3.4 Déteri	mination analytique et contrôle de la qualité des mesures	11
	3.5 Traite	ment et analyse des données	13
	3.5.1	Longueur standardisée	13
	3.5.2	Âge des réservoirs	13
	3.5.3	Analyse statistique et transformation des données	14
	3.5.4	Valeurs de référence	14
	3.5.5	Contenu stomacal des espèces piscivores	15
4.	RÉSULTA	TS	17
	4.1 Milieu	x naturels	17
	4.1.1	Variations interannuelles au lac Gaillarbois	17
	4.1.2	Comparaison avec d'autres régions	17

Table des matières (suite)

	4.2 Réser	voirs	20
	4.2.1	Réservoir de la Sainte-Marguerite 3	20
	4.2.2	Réservoir de la Sainte-Marguerite 2	22
	4.3 Aval ii	mmédiat des réservoirs	24
	4.3.1	Aval immédiat du réservoir de la Sainte-Marguerite 3	24
	4.3.2	Aval immédiat du réservoir de la Sainte-Marguerite 2	25
	4.4 Variat	ion spatiale	25
	4.4.1	Grand corégone	25
	4.4.2	Grand brochet	25
	4.5 Teneu	urs en mercure pour différentes tailles de consommation	25
	4.6 Recor	mmandations de consommation de poissons	28
	4.6.1	Aval immédiat des réservoirs	29
	4.7 Conte	nus stomacaux	31
5.	CONCLUS	SION	39
6.	BIBLIOGE	RAPHIE	41

Liste des tableaux

Tableau 3-1	Stations échantillonnées pour le suivi du mercure dans la chair des poissons du complexe de la Sainte-Marguerite depuis 1992	.7
Tableau 3-2	Espèces et classes de tailles visées pour chaque secteur d'échantillonnage	.9
Tableau 3-3	Effort de pêche (filets-jours) réalisé pour le suivi du mercure dans la chair des poissons au complexe de la Sainte-Marguerite en 2017	. 9
Tableau 3-4	Tailles retenues pour les analyses de mercure des espèces cibles	13
Tableau 4-1	Étendue des teneurs moyennes en mercure total, pour une longueur standardisée, des principales espèces de poissons des complexes de la Sainte-Marguerite et de La Grande ainsi que des bassins versants des rivières Romaine et Churchill	19
Tableau 4-2	Teneurs en mercure à l'aval immédiat des réservoirs de la Sainte- Marguerite 2 et de la Sainte-Marguerite 3 chez le grand corégone, le grand brochet et l'omble de fontaine en 2017	24
Tableau 4-3	Teneurs en mercure obtenues pour différentes longueurs de consommation chez les principales espèces de l'aménagement de la Sainte-Marguerite 3	27
Tableau 4-4	Équivalence entre les teneurs en mercure dans les poissons et les recommandations de consommation pour les adultes en général	28
Tableau 4-5	Teneurs moyennes en mercure (mg/kg) des principales espèces de poissons à la longueur standardisée à l'aménagement hydroélectrique de la Sainte-Marguerite et recommandations de consommation	30
Tableau 4-6	Proportion d'estomacs non vides chez les espèces échantillonnées dans la région de l'aménagement de la Sainte-Marguerite-3 en 2017	31
Tableau 4-7	Occurrence (%) des grands groupes d'organismes identifiés dans les contenus stomacaux des grands brochets capturés en 2017	33
Tableau 4-8	Biomasse (poids humide) des grands groupes d'organismes identifiés dans les contenus stomacaux des grands brochets capturés en 2017 dans la région de l'aménagement hydroélectrique de la Sainte-Marguerite-3	35

Liste des cartes

Carte 2-1	Stations d'échantillonnage6
Liste des figures	
Figure 4-1	Évolution temporelle de la teneur moyenne en mercure à la longueur standardisée chez les principales espèces de poissons dans les milieux naturels de l'aire d'étude, 1997 à 2017
Figure 4-2	Évolution temporelle des teneurs en mercure des principales espèces de poissons dans le réservoir de la Sainte-Marguerite 321
Figure 4-3	Niveau d'eau moyen journalier du réservoir de la Sainte-Marguerite 3 de 2005 à 201722
Figure 4-4	Évolution temporelle des teneurs en mercure des principales espèces de poissons dans le réservoir de la Sainte-Marguerite 2, 2001 à 2017
Figure 4-5	Biomasse relative des poissons piscivores et non piscivores dans les contenus stomacaux des grands brochets dans la région de l'aménagement de la Sainte-Marguerite-3, de 2001 à 2017

Liste des annexes

Annexe 1	Clefs d'identification de paramètres morphologiques
Annexe 1.1.	Stade de maturité des gonades de poissons selon l'échelle de Bückmann (1929)
Annexe 1.2.	Clé d'identification des grands corégones de forme naine
Annexe 2	Captures effectuées dans la région de l'aménagement de la Sainte- Marguerite-3 en 2017
Annexe 3	Évolution des teneurs en mercure des poissons de la région de l'aménagement de la Sainte-Marguerite-3 – statistiques descriptives – tests de comparaisons multiples issus d'analyses de régression polynomiale avec variables indicatrices
Annexe 4	Évolution des teneurs en mercure des poissons de la région de l'aménagement de la Sainte-Marguerite-3 – Diagrammes de dispersion
Annexe 5	Accès aux zones en aval immédiat des centrales
Annexe 6	Description des contenus stomacaux des espèces piscivores capturées dans région de l'aménagement de la Sainte-Marguerite-3 en 2017

1. Introduction

1.1 Description sommaire de l'aménagement

Hydro-Québec a entrepris, en avril 1994, la réalisation de l'aménagement hydroélectrique de la Sainte-Marguerite-3, sur la Moyenne-Côte-Nord, à une centaine de kilomètres au nord de Sept-Îles. Les principaux ouvrages de l'aménagement comprennent un barrage qui ferme la vallée à 90 km de l'embouchure de la rivière pour créer le réservoir de la Sainte-Marguerite 3, une galerie d'amenée de 8,3 km qui permet d'acheminer l'eau du réservoir à la centrale souterraine de 882 MW et un évacuateur de crues. Le remplissage du réservoir de la Sainte-Marguerite 3 a débuté le 1^{er} avril 1998 pour se terminer à la fin de 2002. La cote moyenne d'exploitation a quant à elle été atteinte en 2001.

Le projet a été réalisé à la suite de l'émission du décret 298-94 du gouvernement du Québec et de l'approbation du gouvernement du Canada autorisant l'entreprise à effectuer les travaux. Le suivi environnemental de plusieurs composantes du milieu fait partie intégrante des conditions autorisant la construction et l'exploitation des ouvrages. Un programme de compensation spécifique à l'habitat du poisson a également été déposé et approuvé par Pêches et Océans Canada (MPO) en 1998, complétant les autorisations et engagements pour ce projet.

Les engagements élaborés dans l'étude d'avant-projet, ceux pris lors des audiences publiques de 1993, ainsi que le contenu des ententes signées par Hydro-Québec avec les pouvoirs publics et les intervenants économiques de la région font également partie des obligations de l'entreprise dans le contexte du suivi environnemental.

1.2 Engagements et obligations

Les conditions spécifiques relativement au suivi du mercure dans la chair des poissons sont les suivantes : la condition 16 du décret provincial (298-94) et la condition 6 de l'approbation fédérale. Le calendrier du programme de suivi a été déposé au ministère de l'Environnement et de la Faune du Québec (MEF) (aujourd'hui le MELCC¹) le 21 octobre 1994.

Suivi du mercure dans les poissons

En 1997, Hydro-Québec déposait auprès du MEF le protocole de suivi touchant le suivi du mercure dans le poisson. Ce protocole stipulait : L'objectif suivi du mercure dans le poisson est le suivant :

 fournir des données fiables afin de gérer les risques pour la santé liés à la consommation des espèces du territoire influencé par la création du réservoir de la Sainte-Marguerite 3.

Cet objectif est conforme à la condition 16 du décret provincial et à la condition 6 de l'approbation fédérale. Les données permettront de faire une gestion adéquate du risque en fonction des espèces présentes et de leur consommation respective. Pour ce faire, on établira les teneurs en mercure dans le poisson à fréquence répétée. Ces données seront prélevées en différents points de

¹ Ministère de l'Environnement et de la Lutte contre les changements climatiques

zone d'influence et replacées dans le contexte de l'évolution prévue du phénomène. À échéance, ce programme permettra d'ajuster les mesures d'atténuation prévues à la problématique réelle du projet de la Sainte-Marguerite.

Voici certains détails pertinents :

- Le grand corégone (*Coregonus clupeaformis*) comme espèce non piscivore et le grand brochet (*Esox lucius*) comme espèce piscivore sont retenus comme espèces principales.
- Le touladi (Salvelinus namaycush) et l'omble de fontaine (Salvelinus fontinalis) seront analysés à titre d'espèces incidentes.
- Trois stations principales, soit la partie aval du réservoir de la Sainte-Marguerite 3 (pour vérifier l'évolution du phénomène dans la zone de mise en eau), le réservoir de la Sainte-Marguerite 2 (pour vérifier l'exportation du phénomène vers l'aval) et le lac témoin (pour vérifier les fluctuations naturelles du phénomène);
- On complétera l'état de référence des teneurs en mercure dans les poissons en 1997, dernière année avant la mise en eau. Le suivi de l'évolution du phénomène s'amorcera deux années après le début de la mise en eau du réservoir de la Sainte-Marguerite 3 pour se poursuivre au rythme d'une fois tous les deux ans jusqu'à l'atteinte des teneurs maximales. Par la suite, la fréquence sera d'une fois tous les quatre ans jusqu'au retour aux teneurs rencontrées dans les milieux non aménagés du territoire.
- Les méthodes d'échantillonnage des espèces concernant les classes de tailles, la méthode de traitement des données et les méthodes détaillées seront conformes à celles décrites dans le document « Réseau de suivi environnemental du complexe La Grande. Démarche méthodologique relative au suivi des teneurs en mercure des poissons. Tremblay et al., 1996 ».

À la suite d'une demande de modification du décret provincial 298-94 datant du 4 octobre 2005, le suivi du mercure dans les organismes aquatiques lié à la condition 20 a été abandonné. La condition 20 stipulait : qu'Hydro-Québec complète le programme de suivi en ajoutant les éléments suivants :

- que les teneurs en mercure dans les macro-invertébrés benthiques de certains lacs situés dans les zones à inonder soient caractérisées avant la mise en eau et qu'un suivi de l'évolution du mercure chez ces organismes soit effectué;
- que les teneurs de mercure dans le plancton de certains lacs situés dans les zones à inonder soient mesurées, et qu'un suivi de l'évolution de ces teneurs après la mise en eau du réservoir de la Sainte-Marguerite 3 soit effectué;
- qu'un suivi soit effectué des teneurs de mercure chez les jeunes poissons de l'année, advenant que des hausses importantes et imprévues de mercure dans le poisson de certains secteurs soient observées.

Ainsi, seule la détermination des teneurs initiales de mercure dans les organismes benthiques et le zooplancton, au lac Tabac pour le secteur du réservoir de la Sainte-Marguerite 3 et au lac témoin Gaillarbois, a été effectuée en 1997.

Le suivi lié à la condition 25 du décret provincial a également été abandonné. Cette condition stipulait :

 qu'Hydro-Québec effectue, avant le début des travaux de déboisement du réservoir de la Sainte-Marguerite 3, un inventaire des espèces suivantes : le balbuzard, la loutre et le vison; qu'elle effectue un suivi des teneurs en mercure dans la chair des espèces, dont la densité de population respective le justifierait, selon l'avis du MEF.

Les inventaires ont révélé que la densité de ces populations était insuffisante pour justifier un tel suivi.

1.3 Revue des études antérieures

Suivi du mercure

L'état de référence des teneurs en mercure dans les poissons a été complété en 1997 (Massicotte et Vézina, 1998) avec l'analyse d'un total de 209 poissons, répartis selon les espèces (omble de fontaine, grand corégone, grand brochet, touladi, éperlan arc-en-ciel, meunier noir et plie rouge) provenant des secteurs de l'estuaire, du réservoir de la Sainte-Marguerite 2 et du réservoir de la Sainte-Marguerite 3. Ces mesures venaient compléter celles recueillies en 1992 et 1996. Les teneurs moyennes en mercure ainsi obtenues avant l'aménagement variaient significativement d'un milieu à l'autre : de 0,39 à 0,68 mg/kg pour les grands brochets de 700 mm, de 0,09 à 0,26 mg/kg pour les grands corégones de 400 mm, de 0,04 à 0,24 mg/kg pour les meuniers noirs de 400 mm. Des teneurs moyennes respectives de 0,03 et de 0,75 mg/kg ont également été obtenues pour la plie rouge et le touladi de 600 mm. Pour l'ensemble de ces espèces, les teneurs moyennes sont similaires à celles obtenues dans les lacs naturels des régions de La Grande Rivière et des rivières Nottaway, Broadback et Rupert.

Le suivi des teneurs en mercure dans les poissons en période de construction et d'exploitation a été réalisé en 2001, 2005, 2008, 2011 et 2014.

Au réservoir de la Sainte-Marguerite 3, la teneur moyenne en mercure des grands corégones de 400 mm a atteint une valeur maximale de 0,78 mg/kg, sept ans après la mise en eau, pour ensuite diminuer à 0,60 mg/kg en 2008, soit 10 ans après la mise en eau (GENIVAR, 2009) et diminuer à 0,47 mg/kg en 2011, soit 13 ans après la mise en eau (GENIVAR, 2012). En 2014, soit 16 ans après la mise en eau, la teneur moyenne en mercure de ces poissons a diminué à 0,46 mg/kg (Belles-Isles et Bilodeau, 2015).

Pour les grands brochets de 700 mm de ce réservoir, la teneur moyenne obtenue en 2014 (1,31 mg/kg) montre une diminution significative de plus de 30 % par rapport à la valeur maximale atteinte en 2008 (1,90 mg/kg). Les teneurs en mercure chez le grand brochet ont donc plafonné environ 10 ans après le début de la mise en eau du réservoir et redescendent maintenant (Belles-Isles et Bilodeau, 2015).

Dans le réservoir de la Sainte-Marguerite 2, situé en aval du réservoir de la Sainte-Marguerite 3, la teneur moyenne en mercure des grands corégones de 400 mm obtenue en 2014 (0,20 mg/kg) est significativement inférieure à celle enregistrée à l'état de référence, indiquant un retour aux teneurs initiales. Pour le grand brochet de 700 mm, la teneur moyenne atteinte en 2014 (0,97 mg/kg) est significativement inférieure à la valeur maximale obtenue en 2005 (2,02 mg/kg)

et correspond à une diminution de près de 50 %. Les teneurs en mercure chez le grand brochet ont donc plafonné entre 7 et 10 ans après le début de la mise en eau du réservoir de la Sainte-Marguerite 3 et redescendent maintenant (Belles-Isles et Bilodeau, 2015).

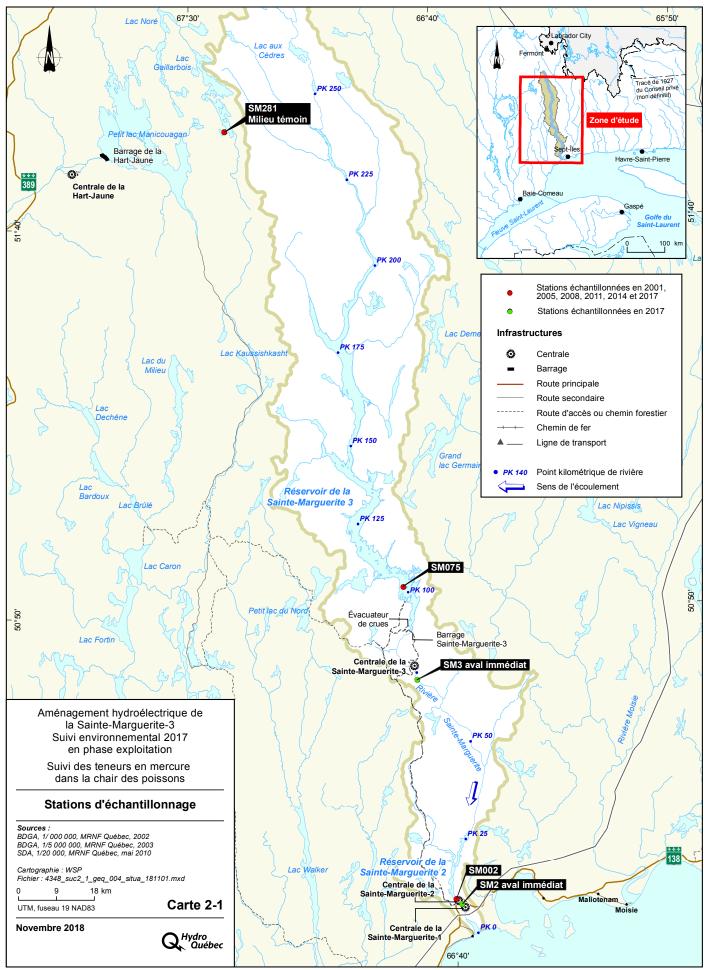
Le guide alimentaire des poissons et des fruits de mer de la Côte-Nord, produit et distribué en 2013 en collaboration avec l'Agence de la santé et des services sociaux de la Côte-Nord, incorpore la région de la rivière Sainte-Marguerite. On y retrouve, entre autres, des recettes, des conseils santé, des renseignements pour les amateurs de pêche et des recommandations de consommation qui ont été mises à jour en fonction des résultats du dernier suivi de 2011. Il remplace le guide type cartographique produit en 2003, guide qui avait fait l'objet d'une évaluation en 2004.

2. Objectifs et zone d'étude

2.1 Objectifs

La présente étude vise à mettre à jour des teneurs en mercure dans la chair des poissons, 19 ans après le début de la mise en eau du réservoir de la Sainte-Marguerite 3, avec pour objectif global la gestion du risque pour la santé des consommateurs de poissons. Le suivi est réalisé aux réservoirs de la Sainte-Marguerite 2 et de la Sainte-Marguerite 3 ainsi que dans un lac témoin de la région de l'aménagement hydroélectrique.

Les objectifs spécifiques sont :


- de recueillir les échantillons de poissons pour la détermination de la teneur en mercure;
- de réaliser les déterminations analytiques de la teneur en mercure total de ces échantillons;
- d'effectuer le traitement mathématique des résultats afin de comparer les teneurs de 2017 avec celles obtenues lors des campagnes antérieures réalisées en 2014, 2011, 2008, 2005, 2001 et avant la mise en eau. Le traitement mathématique permettra aussi de comparer, entre elles, les valeurs obtenues en 2017 aux différentes stations d'échantillonnage;
- d'identifier le contenu stomacal des poissons piscivores;
- gérer le risque pour la santé de la consommation de poissons en révisant les recommandations de consommation selon les espèces et les secteurs.

2.2 Zone d'étude

La zone d'étude est située dans le bassin versant de la rivière Sainte-Marguerite qui s'écoule dans l'estuaire maritime du Saint-Laurent, à quelque 7 km à l'ouest de la baie des Sept Îles. Elle comprend les réservoirs de la Sainte-Marguerite 2 et de la Sainte-Marguerite 3, l'aval immédiat de ces deux réservoirs, ainsi que le lac Gaillarbois (carte 2-1). Ce lac se situe au nord-ouest de la rivière Sainte-Marguerite, dans le bassin versant de la rivière Manicouagan, et sert de milieu témoin pour le suivi des teneurs en mercure depuis 1997 puisqu'il n'est pas influencé par les aménagements.

Le réservoir de la Sainte-Marguerite 3 s'étend sur longueur de 140 km. Sa superficie est de 262,2 km², dont 230,5 km² constituent des milieux ennoyés par la mise en eau du réservoir, qui a débuté en 1998 pour s'achever en 2002. La profondeur maximale du réservoir est de 142 m à la cote maximale d'exploitation (407 m) et son marnage maximum est de 14 m.

Le réservoir de la Sainte-Marguerite 2, exploité par la compagnie Gulf Power, a été créé en 1954. Sa superficie est de 10,4 km².

3. Méthodologie

3.1 Chronologie et stations échantillonnées

Le suivi des teneurs en mercure dans la chair des poissons relatif à l'aménagement de la Sainte-Marguerite a débuté en 1992, six ans avant le début de la mise en eau du réservoir de la Sainte-Margerite-3 (tableau 3-1). Des données en milieu naturel ont été recueillies au lac aux Cèdres en 1992 puis au lac Gaillarbois depuis 1997.

Les stations échantillonnées depuis le début du suivi des teneurs en mercure en 1992 apparaissent au tableau 3-1. La station SM002 du réservoir de la Sainte-Marguerite 2 fait l'objet d'un suivi depuis 1992. Au réservoir de la Sainte-Marguerite 3, les premières données ont été recueillies en 1996 et 1997, avant le début de la mise en eau en 1998. Le suivi est réalisé à la station SM075 depuis 2001.

Tableau 3-1 Stations échantillonnées pour le suivi du mercure dans la chair des poissons du complexe de la Sainte-Marguerite depuis 1992

Milieu	Station	Suivi du mercure								
		1992	1996	1997	2001	2005	2008	2011	2014	2017
Lac aux Cèdres (témoin)	SM0311*	V								
Lac Gaillarbois (témoin)	SM281			V	√	V	√	V	√	V
Réservoir de la Sainte-Marguerite 2	SM002	V		V	V	V	√	V	√	V
Aval immédiat du réservoir de la Sainte- Marguerite 2										V
Réservoir de la Sainte-Marguerite 3	SM072*		V							
	SM073*		V							
	SM075		V		V	V	V	V	V	V
	SM076*			V						
	SM077*			V						
	SM169*		V							
	SM109*							V		
Aval immédiat du réservoir de la Sainte- Marguerite 2										V

^{*} La position de ces stations n'est pas illustrée dans ce rapport, se référer à la carte 2-1 du rapport de GENIVAR 2012.

En 2017, les secteurs situés à l'aval immédiat des réservoirs de la Sainte-Marguerite 2 (de 1 à 2,5 km de la centrale) et de la Sainte-Marguerite 3 (de 1 à 1,6 km de la centrale) ont été échantillonnés pour une première fois. Le suivi 2017 porte donc sur quatre secteurs de la rivière Sainte-Marguerite et sur le lac Gaillarbois (lac témoin).

La position des stations échantillonnées en 2017 est illustrée sur la carte 2-1.

3.2 Stratégie d'échantillonnage

3.2.1 Espèces cibles et incidentes

Les espèces cibles visées par le suivi des teneurs en mercure à l'aménagement SM-3 sont le grand brochet et le grand corégone. Le grand brochet est typiquement piscivore et sa position trophique élevée fait en sorte que sa teneur en mercure est plus élevée que la plupart des autres espèces de poissons. Le grand corégone est généralement benthophage ou planctonophage, mais parfois piscivore à l'aval immédiat de centrales hydroélectriques (Schetagne et Therrien, 2013). Pour les deux espèces cibles, un effectif minimum de 30 spécimens par espèce et par station est visé et l'échantillonnage se poursuit jusqu'à ce que ces effectifs soient atteints.

Deux autres espèces ont été échantillonnées à titre d'espèces incidentes, car moins abondantes, soit le touladi et l'omble de fontaine. Un effectif de 30 spécimens par espèce par station est visé, mais les pêches ne se poursuivent pas si cet effectif n'est pas atteint.

Pour chaque espèce, on vise de plus une répartition uniforme de la longueur des spécimens suivant celles indiquées au tableau 3-2. Comme la teneur en mercure augmente généralement avec la taille des poissons, une répartition la plus uniforme possible est requise pour obtenir une précision suffisante sur la teneur en mercure des poissons à une longueur donnée. Ce sont ces classes de tailles qui sont conservées pour les analyses de comparaisons temporelles ou spatiales. Toutefois, le plus petit et le plus grand spécimens, s'ils sont à l'extérieur de ces classes de tailles, peuvent aussi être retenus pour les analyses du mercure. Toutefois, ces résultats n'apparaissent généralement que dans les diagrammes de dispersion présentés en annexe (voir section 4). Le grand brochet du suivi de l'aménagement de la Sainte-Marguerite-3 constitue une exception à cette règle tirée de la méthode (Tremblay et al., 1996). En effet, les faibles effectifs lors de certaines années du suivi ont requis que tous les spécimens soient considérés. Par conséquent, dans un souci d'uniformité pour les comparaisons annuelles, cette pratique a été maintenue.

3.2.2 Campagnes d'échantillonnage

L'échantillonnage a été réalisé en deux campagnes au cours de l'été 2017. La première campagne a été effectuée du 23 au 30 juillet. Une seconde campagne a été réalisée du 29 août au 1^{er} septembre dans le but de compléter les effectifs de certaines classes de longueur.

Le principal engin de pêche utilisé est le filet expérimental à six panneaux, de mailles étirées de 25 à 102 mm. Cet engin est relativement peu sélectif et permet de capturer une grande gamme de tailles de poissons. Des filets à mailles uniformes de 25, 76 et 102 mm ont été utilisés pour cibler les grandes et les petites classes de longueur. L'effort de pêche réalisé est résumé au tableau 3-3. De plus, la pêche à la ligne a été utilisée pour tenter de combler les grandes tailles chez le grand brochet. Les efforts consentis ont respecté les conditions du permis de pêche scientifique octroyé par le ministère des Forêts, de la Faune et des Parcs (MFFP).

À chaque station, les filets ont été installés dans des habitats propices aux espèces recherchées et variés en termes de profondeur, d'abri et de conditions d'écoulement. Cette répartition visait à favoriser la capture des classes de longueur recherchées.

Tableau 3-2 Espèces et classes de tailles visées pour chaque secteur d'échantillonnage

Espèce	Classe de taille	Effectif par classe	
	(mm)		
	100-200	6	
Grand corégone	201-300	6	
(espèce cible)	301- 400	6	
(espece cibie)	401-500	6	
	501-600	6	
	Total	30	
	400-500	5	
	501-600	5	
Grand brochet	601- 700	5	
(espèce cible)	701-800	5	
	801-900	5	
	901-1 000	5	
	Total	30	
	300-400	5	
	401-500	5	
Touladi	501- 600	5	
(espèce incidente)	601-700	5	
	701-800	5	
	801-900	5	
	Total	30	
	150-200	5	
	201- 250	5	
Omble de fontaine	251-300	5	
(espèce incidente)	301-350	5	
	351-400	5	
	> 400	5	
	Total	30	

Les longueurs de consommation sont indiquées en caractères gras.

Tableau 3-3 Effort de pêche (filets-jours) réalisé pour le suivi du mercure dans la chair des poissons au complexe de la Sainte-Marguerite en 2017

	Station	Effort de pêche (filets-jours)					
Secteur		Filet expérimental (6 panneaux)	Filet à mailles uniformes (102 mm)	Filet à mailles uniformes (76 mm)	Filet à mailles uniformes (25 mm)		
Lac Gaillarbois	SM281	12	0	0	4		
Réservoir SM 3	SM075	12	0	0	4		
Aval immédiat SM2	SM2 aval	20	4	3	5		
Réservoir SM 2	SM002	14	4	4	3		
Aval immédiat SM3	SM3 aval	16	4	2	2		
Total		74	12	9	18		

3.3 Mesures et prélèvements sur les poissons

3.3.1 Caractéristiques biologiques

Pour chaque spécimen d'espèces cibles et incidentes, la longueur totale (mm) et la masse (au 0,1 g) ont été notées au laboratoire de terrain, de même que le sexe et le stade de maturité sexuelle selon l'échelle de Bückmann (annexe 1.1).

3.3.2 Prélèvement des échantillons de chair et des structures anatomiques

Aux fins de l'analyse des teneurs en mercure, un échantillon de chair exempt d'arêtes, de peau et d'écailles, d'une masse d'environ 20 g, a été prélevé selon la méthodologie d'usage courant dans les suivis d'Hydro-Québec (Tremblay et al., 1996). Les échantillons étaient mis dans des sacs individuels de type Whirlpack et immédiatement congelés (- 20°C) au laboratoire de terrain et ainsi préservés jusqu'au moment de leur analyse par un laboratoire accrédité.

Des prélèvements en triplicata « fantôme » ont été réalisés pour 10 % des spécimens. Ces triplicata portent des numéros séquentiels et sont expédiés au laboratoire comme s'ils provenaient de spécimens distincts. Les analyses de triplicata fantômes permettent de vérifier de façon indépendante la répétabilité des analyses chimiques, en plus des contrôles qualité réguliers appliqués par le laboratoire.

Les structures anatomiques permettant de déterminer l'âge des poissons ont également été prélevées pour les espèces cibles et incidentes. Ces structures sont les suivantes :

- grand corégone, touladi et omble de fontaine : otolithes et écailles ;
- grand brochet : cleithrum.

3.3.3 Contenu stomacal

Pour les espèces de poissons prédatrices (grand brochet, omble de fontaine et touladi), de même que pour les grands corégones capturés dans tous les milieux, des analyses de contenus stomacaux ont été réalisées. Ces analyses visent à préciser le niveau trophique des spécimens, les teneurs en mercure étant généralement plus élevées chez les spécimens se nourrissant d'autres poissons.

Pour chaque spécimen, la cote de réplétion de l'estomac était notée, de même que le nombre, l'espèce et la longueur des poissons-proies, lorsque présents. Pour chaque espèce de proie retrouvée partiellement digérée dont la longueur pouvait être mesurée, le pourcentage du contenu stomacal occupé par cette dernière a estimé selon les relations longueur-masse calculées à partir de la banque Poisson ou selon la littérature disponible.

Les cotes de réplétion sont les suivantes :

1: trace d'aliments 5: rempli à 100 %

2: rempli à 25 % 6: fempli de chyme

3: rempli à 50 % 7: 7: vide

4: rempli à 75 %

Pour les types de contenus autres que les poissons (insectes, organismes benthiques, algues, etc.), la masse du contenu stomacal a été notée par type de contenu.

Les espèces de poissons autres que les espèces cibles et incidentes ont seulement été identifiées et dénombrées.

3.3.4 Différenciation des grands corégones de forme naine

Les résultats obtenus dans différents plans d'eau de la Côte-Nord ou du Labrador ont montré la présence du grand corégone de forme naine (Bruce, 1984; Fortin et Gendron, 1990; GENIVAR, 2006a). Les données des années antérieures suggèrent que des populations de grands corégones nains pourraient être présentes dans les plans d'eau à l'étude.

Les populations de grands corégones nains se caractérisent par des spécimens à maturation précoce et à croissance lente (maturation à une longueur inférieure à 280 mm; Fortin et Gendron, 1990). La population normale est composée de spécimens à maturation plus tardive et à croissance plus rapide. Ces caractéristiques biologiques différentes pouvant entraîner des taux différents d'accumulation du mercure, les grands corégones capturés ont été examinés au terrain afin de distinguer les deux formes. Un spécimen était considéré de forme naine si sa taille était inférieure ou égale à 280 mm et qu'il avait atteint la maturité sexuelle (stade 3 ou plus au mois de juillet, selon l'échelle de Bückmann). La clé d'identification des formes de grand corégone est présentée à l'annexe 1.2. À noter que l'âge des spécimens n'a pas été déterminé aux fins de la détermination des formes de grand corégone.

3.4 Détermination analytique et contrôle de la qualité des mesures

La quantification des teneurs en mercure total dans les échantillons de poisson a été effectuée par le laboratoire accrédité Maxxam Analytiques inc. selon la méthode mise au point par Environnement Canada (1979). Le dosage du mercure a été effectué par absorption atomique (appareil CETAC) avec un générateur en circuit fermé de vapeur froide de mercure. La limite de détection de la méthode est de 0,008 mg Hg/kg et la limite de quantification, de 0,027 mg Hg/kg. D'autres détails méthodologiques apparaissent dans Maxxam Analytiques inc. (2017). Les concentrations de mercure total sont exprimées en poids humide (mg/kg).

Contrôle de la qualité

Les analyses du mercure font l'objet d'un rapport remis annuellement à Hydro-Québec, qui décrit les procédures de contrôle de qualité appliquées. Un rapport a ainsi été préparé par le laboratoire Maxxam Analytiques (2017) pour les analyses réalisées dans le cadre des suivis des aménagements des rivières Romaine et Sainte-Marguerite. Ce rapport présente également une évaluation de la performance analytique concernant la précision (réplicabilité) et la fiabilité des résultats (répétabilité², reproductibilité et justesse).

Le résultat de répétabilité n'est pas optimal (24 %), car le laboratoire a utilisé un matériau dont la concentration était bien inférieure à la limite de quantification.

La limite de détection des analyses réalisées en 2017 s'établit à 0,008 mg/kg, soit à l'intérieur de l'intervalle des valeurs obtenues au cours des 10 années précédentes (de 0,003 à 0,011 mg/kg). La limite de quantification correspond à trois fois la limite de détection ou à 10 fois l'écart-type obtenu sur la mesure d'un échantillon de contrôle. En deçà de ce seuil, les concentrations en mercure sont moins précises et difficilement interprétables. La limite de quantification pour l'année 2017 est de 0,027 mg/kg et se situe également à l'intérieur de l'intervalle des années 2006 à 2016 (0,011 à 0,037).

La réplicabilité des résultats analytiques est évaluée à l'aide d'échantillons analysés en triplicata. Le laboratoire calcule le coefficient de variation³ des résultats pour chacun des triplicata. Le coefficient de variation pour l'année 2017 est de l'ordre de 8 %.

Cette valeur se situe à l'intérieur de la gamme des valeurs des années précédentes (coefficients de variation variant de 6,3 à 13,8 % en 2017 vs 2,3 à 9,6 % pour les années 2007 à 2016). Le résultat de 2017 est donc jugé acceptable.

Afin d'obtenir une meilleure assurance de fiabilité des résultats d'analyses au niveau de la reproductibilité et de la justesse, le laboratoire a participé au programme Food Analysis Performance Assessment Scheme (FAPAS) de The Food and Environment Research Agency en Angleterre (UK) en mai-juin 2017 (étude 07285) et en août-octobre 2017 (étude 07292). Les valeurs de justesse⁴ obtenues pour l'année 2017 sont de 97,8 et de 103,7 %. Ces valeurs se situent à l'intérieur de l'intervalle obtenu pour les années 2006 à 2016 et sont jugées acceptables.

L'analyse de triplicata fantômes fournit un élément supplémentaire de contrôle qualité. Ces triplicata consistent en trois échantillons de chair prélevés sur un même poisson, qui sont fournis au laboratoire comme s'il s'agissait d'échantillons distincts. Ces analyses permettent d'évaluer, de façon indépendante du laboratoire, la répétabilité des analyses. Environ 10 % des poissons ont fait l'objet d'un triplicata fantôme (64 spécimens). Le coefficient de variation moyen obtenu pour ces triplicata est de 13,5 %. Cette valeur se situe dans la partie élevée de la gamme des valeurs obtenues lors de tels contrôles (en général, moins de 10 %). Pour certains spécimens, les analyses ont en effet montré des écarts plus élevés que ce qui est attendu. Par ailleurs, les concentrations de mercure plus faibles, typiques en début de suivi, produisent souvent des coefficients de variations plus élevés malgré de faibles écarts entre triplicata.

Enfin, les résultats font l'objet d'une vérification supplémentaire qui met en relation, par des diagrammes de dispersion, les concentrations en mercure obtenues et la taille des spécimens. Cette vérification permet d'identifier les échantillons qui présentent des valeurs douteuses, lesquels font alors l'objet d'une reprise d'analyse par le laboratoire. Quinze (15) spécimens sur 624 ont fait l'objet de telles reprises (soit 2 %).

-

Coefficient de variation: rapport en pourcentage entre l'écart type et la moyenne des résultats d'un triplicata.

⁴ Justesse : rapport entre la moyenne des résultats d'analyse et la valeur attendue.

3.5 Traitement et analyse des données

3.5.1 Longueur standardisée

L'étude de l'évolution spatio-temporelle du mercure est réalisée en calculant la teneur moyenne en mercure pour des poissons de longueurs standardisées. Ces longueurs standardisées correspondent approximativement aux longueurs moyennes des captures effectuées par les filets, lesquelles correspondent aussi à celles les plus susceptibles d'être capturées par les pêcheurs :

grand corégone : 400 mm;grand brochet : 700 mm;

touladi : 600 mm;

omble de fontaine : 300 mm.

Pour chacune des espèces cibles, les teneurs en mercure ont aussi été calculées pour d'autres longueurs que la longueur standardisée (tableau 3-4). Il s'agit de longueurs utilisées lors des suivis précédents pour recommander un taux de consommation de poisson permettant de maintenir un niveau d'exposition au mercure sécuritaire selon les organismes de santé publique. Ces longueurs étaient de 350, 450 et 500 mm pour le grand corégone et de 550 et 1 000 mm pour le grand brochet.

Tableau 3-4 Tailles retenues pour les analyses de mercure des espèces cibles

Espèce	Longueur standardisée (mm)	Autres longueurs (mm)
Grand corégone	400	350, 450, 500
Grand brochet	700	550, 1000

3.5.2 Âge des réservoirs

De façon à uniformiser l'analyse des données et le mode de présentation des résultats, l'été 1998, le premier été de mise en eau du réservoir de la Sainte-Marquerite 3, a été considéré comme étant l'âge 0. En 2017, le réservoir avait donc 19 ans. Pour le réservoir de la Sainte-Marguerite 2, mis en eau en 1954, on estime que les teneurs en mercure dans la chair des poissons étaient redevenues comparables à celles des conditions naturelles lorsque la mise en eau du réservoir de la Sainte-Marquerite 3 a débuté. En effet, à cette latitude, en se basant sur le suivi effectué au complexe La Grande (Schetagne et Therrien, 2013), un tel retour se ferait en moins de 30 ans. L'année 1998 devient donc l'âge 0 d'une nouvelle modification du milieu induite par la création du réservoir de la Sainte-Marquerite 3. En effet, le réservoir de la Sainte-Marquerite 2 étant situé en aval du réservoir de la Sainte-Marquerite 3, il reçoit du mercure et des organismes l'ayant bioaccumulé. Il est important de préciser que le mercure est exporté en aval des réservoirs lors des évacuations d'eau (déversements ou turbinage) et est ainsi transféré aux poissons aussi rapidement que dans les réservoirs. Il est démontré que les poissons accumulent le mercure surtout par la nourriture qu'ils ingèrent et très peu par l'eau (Hall et al., 1997). En fait, le zooplancton exporté représente la principale composante qui influence les teneurs en mercure dans la chair des poissons localisés en aval des ouvrages (Schetagne et al., 2000). Cette exportation se limite au premier grand plan d'eau à l'aval d'un réservoir en raison de la prédation du zooplancton par les organismes aquatiques qui y sont présents.

Hydro-Québec Production, Centre de documentation Environnement et collectivités HQ-2019-008

3.5.3 Analyse statistique et transformation des données

Des analyses statistiques ont été effectuées afin de déterminer si les variations spatiales et temporelles dans les teneurs en mercure étaient significatives sur le plan statistique. L'approche statistique utilisée consiste d'abord à calculer par régression la relation entre la longueur des poissons et la teneur en mercure. Les calculs sont réalisés par régression polynomiale avec variables indicatrices (Tremblay et al., 1996 et 1998). Les coefficients de régression sont ensuite utilisés pour calculer la teneur en mercure à la longueur standardisée ou aux autres longueurs considérées, par interpolation. Aux fins des régressions, les données sur le mercure ont été transformées de la même façon que lors des suivis précédents, en utilisant le logarithme en base 10.

3.5.4 Valeurs de référence

Dans les comparaisons temporelles, la valeur moyenne utilisée comme point de référence en conditions naturelles a été calculée en utilisant les mêmes regroupements de poissons que ceux utilisés en 2001, 2005, 2008, 2011 et 2014 (Massicotte et al., 2002; GENIVAR, 2006b, 2009, 2012 et Belles-Isles et Bilodeau, 2015), soit :

- le réservoir de la Sainte-Marguerite 2 en 1992 pour le grand corégone du réservoir de la Sainte-Marguerite 2 (tel que précisé à la section 3.5.2, sa mise en eau en 1954 a permis un retour à des concentrations similaires à celles des milieux naturels en 1992):
- le réservoir de la Sainte-Marguerite 2 en 1992 et en 1997 pour le grand brochet du réservoir de la Sainte-Marguerite 2;
- le lac Gaillarbois (1997 et 2001), ainsi que des lacs et rivières dans les limites du réservoir de la Sainte-Marguerite 3 avant sa mise en eau (1996) pour le grand corégone du réservoir de la Sainte-Marguerite 3 et pour la comparaison spatiale;
- le lac Gaillarbois en 1997 et en 2001 pour le grand brochet du réservoir de la Sainte-Marquerite 3 et pour la comparaison spatiale.

La valeur moyenne utilisée comme point de référence ne tient toutefois pas compte de la variabilité des teneurs en mercure d'un lac à l'autre. De plus, son intervalle de confiance à 95 % est souvent de faible amplitude, à cause du nombre parfois élevé de poissons. Pour permettre de mieux déterminer le temps nécessaire au retour vers des concentrations représentatives des milieux naturels, les concentrations en mercure obtenues dans les milieux modifiés ont été comparées à celles comprises dans l'étendue des valeurs moyennes provenant de chacun des lacs naturels de la Côte-Nord, pour chacune des espèces. Ces valeurs moyennes par lac sont tirées des suivis du complexe de la Sainte-Marguerite ainsi que d'un inventaire effectué sur la rivière Romaine⁵.

Aménagement hydroélectrique de la Sainte-Marguerite-3 Suivi environnemental 2017 en phase exploitation. Suivi des teneurs en mercure dans la chair des poissons. Février 2019. Hydro-Québec Production, Centre de documentation Environnement et collectivités HQ-2019-008

Les résultats du suivi de la centrale hydroélectrique de la Toulnustouc n'ont pas été utilisés, car le grand brochet et le grand corégone ne sont pas présents dans ce réservoir (réservoir du lac Sainte-Anne).

L'étendue de variation des teneurs moyennes en mercure pour une longueur standardisée dans les milieux (lacs) naturels pour chaque espèce cible est :

- grand corégone (400 mm): 0,07 à 0,28 mg/kg;
- grand brochet (700 mm): 0,26 à 0,78 mg/kg.

3.5.5 Contenu stomacal des espèces piscivores

Le traitement des données concernant le régime alimentaire du grand brochet et de l'omble de fontaine (espèces piscivores) est basé sur l'occurrence et la biomasse des proies. Comme le chyme consiste en de la nourriture partiellement digérée (non identifiable), de l'eau, de l'acide chlorhydrique et diverses enzymes de digestion, il a été considéré qu'il contenait des proies présentes dans les mêmes proportions que ce que l'on retrouve d'identifiable dans l'estomac. Pour cette raison, pour les calculs de l'occurrence et de la biomasse relative, les estomacs ne contenant que du chyme ont été exclus des analyses.

La fréquence d'occurrence est obtenue en divisant, pour une station ou un milieu donné, le nombre d'estomacs dans lequel un groupe d'organismes est observé par le nombre total d'estomacs non vides examinés ne contenant pas seulement du chyme (cotes de réplétion de 2 à 5). Les résultats représentent donc le pourcentage d'individus dans chaque secteur ayant consommé majoritairement des insectes, des poissons, etc.

La contribution relative d'une proie donnée dans le régime alimentaire a été déterminée, pour un milieu donné, à partir de sa contribution en masse par rapport à la biomasse totale de proies ingérées, excluant le chyme. La masse de tous les poissons-proies a été obtenue à cette fin lors des analyses au laboratoire de terrain.

Certaines proies n'ont pas été identifiées et il n'a pas été possible de reconstituer leur masse. Il s'agit de poissons très digérés ou des débris de poissons sur lesquels il n'était pas possible de mesurer la longueur. Les masses mesurées étaient alors regroupées sous « espèce indéterminée ».

4. Résultats

Ce chapitre présente les teneurs en mercure observées dans la chair des poissons en 2017, de même que leur évolution dans les différents milieux depuis le début du suivi. Les recommandations de consommation qui en découlent sont présentées à la section 4.6.

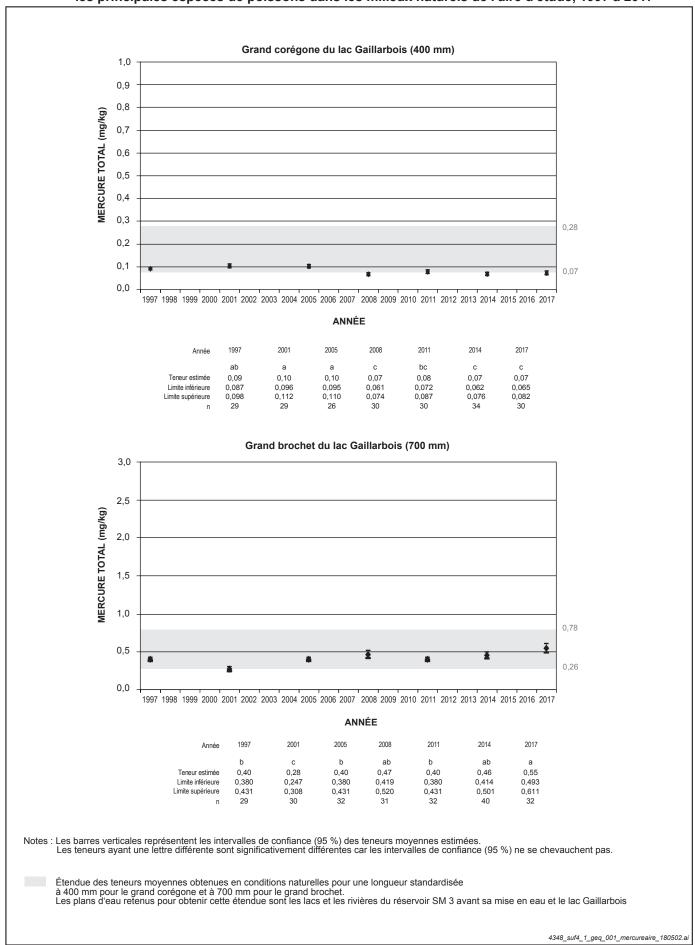
Le nombre total de captures a été de 1 465 poissons et il est détaillé par espèce et par station à l'annexe 2. Les deux espèces cibles (grand corégone et grand brochet) ont été capturées en nombres suffisants (minimum de 30 poissons) à toutes les stations. Mais les deux espèces incidentes ont été peu capturées, soit seulement 2 touladis à la station témoin (lac Gaillarbois) et 14 ombles de fontaine à la station située immédiatement en aval de la centrale de la Sainte-Marguerite-3. Cet effectif réduit a néanmoins permis de faire une analyse statistique pour l'omble de fontaine. D'ailleurs, il y a eu 385 analyses de mercure (321 spécimens plus 32 en triplicatas).

Des renseignements supplémentaires sur les teneurs en mercure, incluant les statistiques descriptives, les diagrammes de dispersion, les courbes de régression et des graphiques illustrant les tendances spatiales et temporelles, sont fournis aux annexes 3 et 4.

4.1 Milieux naturels

4.1.1 Variations interannuelles au lac Gaillarbois

En 2017, la teneur en mercure estimée à la longueur standardisée (400 mm) chez le grand corégone du lac Gaillarbois était de 0,07 mg/kg. Cette teneur est semblable à celles mesurées dans ce lac depuis 2008 (de 0,07 à 0,08 mg/kg; figure 4-1). La valeur de 2017 est par ailleurs légèrement plus faible que celles des années 1997 à 2005 (0,09 à 0,10 mg/kg). Les valeurs chez le grand corégone du lac Gaillarbois sont donc très faibles pour l'ensemble des années et montrent une très légère (mais significative) diminution au cours des 30 dernières années.


En ce qui concerne le grand brochet de ce lac témoin, la teneur en mercure estimée à la longueur standardisée (700 mm) en 2017 était de 0,55 mg/kg (figure 4-1). C'est la teneur la plus élevée obtenue depuis le début du suivi, bien qu'elle ne soit pas significativement différente de celles de 2008 (0,47 mg/kg) ou de 2014 (0,46 mg/kg). Contrairement au grand corégone, c'est une légère augmentation qui est observée depuis le début du suivi.

4.1.2 Comparaison avec d'autres régions

L'étendue des teneurs moyennes en mercure du grand corégone de forme normale dans les lacs naturels du complexe de la Sainte-Marguerite (tableau 4-1; 0,07 à 0,28 mg/kg à 400 mm) est semblable à celle obtenue dans le secteur est du complexe La Grande (0,10 à 0,30 mg/kg) et légèrement plus faible que celle obtenue dans le bassin versant de la rivière Churchill au Labrador (0,14 à 0,45 mg/kg). La teneur moyenne obtenue pour les milieux échantillonnés dans le bassin versant de la rivière Romaine (0,13 mg/kg) est comprise dans cet intervalle.

L'étendue naturelle des teneurs moyennes chez le grand brochet du complexe de la Sainte-Marguerite (0,26 à 0,78 mg/kg à 700 mm) est légèrement inférieure à celle obtenue au complexe La Grande (0,36 à 0,92 mg/kg) et à Churchill (0,75 à 0,94 mg/kg), mais englobe celle de la Romaine (0,34 à 0,42 mg/kg).

Figure 4-1 Évolution temporelle de la teneur moyenne en mercure à la longueur standardisée chez les principales espèces de poissons dans les milieux naturels de l'aire d'étude, 1997 à 2017

Étendue des teneurs moyennes en mercure total, pour une longueur standardisée, des principales espèces de poissons des complexes de la Sainte-Marguerite et de La Grande ainsi que des bassins versants des rivières Romaine et Churchill Tableau 4-1

	•	Sainte-Marguerite	ø		Romaine ¹	·	La Gr	ande (sec	La Grande (secteur est) 2		Churchill ³	III3
Espèce (longueur standardisée)	Nombre de poissons	Nombre de plans d'eau	Teneur moyenne et étendue⁴ (mg/kg)	Nombre de poissons	Nombre de secteurs ⁵	Teneur moyenne et étendue⁴ (mg/kg)	Nombre de poissons	Nombr e de plans d'eau	Teneur moyenne et étendue⁴ (mg/kg)	Nombre Nombre de de poisson plans s d'eau	Nombre de plans d'eau	Teneur moyenne et étendue⁴ (mg/kg)
Grand corégone (400 mm)	110	2	0,10 (0,07 - 0,28)	99	2	0,13	187	80	0,17 (0,10 - 0,30)	217	3	N/A (0,14 - 0,45)
Grand brochet (700 mm)	122	-	0,38 (0,26 - 0,78)	125	4	0,38 (0,34 - 0,42)	120	4	0,55 (0,36 - 0,92)	84	2	N/A (0,75 - 0,94)

¹ Valeurs tirées de GENIVAR et Hydro-Québec (2005).

Valeurs tirées de Schetagne et al. (2002). Le secteur est seulement considéré en raison de sa plus grande proximité.
 3 Valeurs tirées de Jacques Whitford Environment et Groupe-conseil GENIVAR (2002). Les mêmes plans d'eau ont été échantillonnés plus d'une fois. Chaque fois une teneur moyenne a été

calculée, mais aucune moyenne globale incluant l'ensemble des échantillonnages n'est disponible.

⁴ Teneur moyenne des données pour l'ensemble des secteurs ou plans d'eau et, entre parenthèses, étendue des teneurs moyennes à la longueur standardisée par secteur ou plan d'eau.

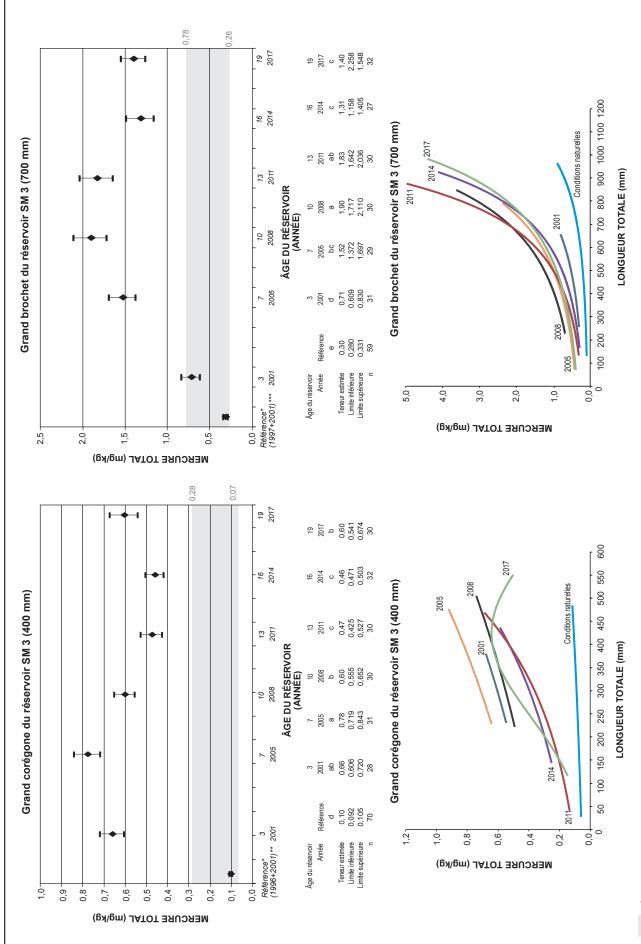
Les milieux naturels ont été regroupés selon les secteurs du projet du complexe de la rivière Romaine pour obtenir des effectifs suffisants pour les analyses.

Les valeurs enregistrées dans le lac Gaillarbois sont donc, tant pour le grand brochet que pour le grand corégone, comparables à celles d'autres milieux naturels non perturbés et aucune tendance temporelle ne ressort des résultats.

4.2 Réservoirs

4.2.1 Réservoir de la Sainte-Marguerite 3

4.2.1.1 Grand corégone


Chez le grand corégone, la teneur moyenne estimée au réservoir de la Sainte-Marguerite 3 en 2017 est de 0,60 mg/kg (figure 4-2). Cette teneur est significativement plus élevée que celles observées lors des deux derniers suivis, en 2011 et 2014 (0,47 et 0,46 mg/kg respectivement), mais demeure inférieure à la valeur maximale mesurée en 2005 (0,78 mg/kg).

Après la mise en eau du réservoir de la Sainte-Marguerite-3, les teneurs ont augmenté de façon marquée pour atteindre des valeurs de plus de six fois celles observées en milieu naturel (0,66 mg/kg en 2001 et 0,78 mg/kg en 2005). Après avoir atteint un maximum en 2005, les valeurs ont diminué jusqu'en 2014, mais demeuraient supérieures à celles des milieux de référence (0,46 mg/kg vs 0,10 mg/kg). La teneur de 2017 (0,60 mg/kg) représente une augmentation significative par rapport à celle de 2014, alors qu'on se serait attendu à ce que les teneurs continuent de diminuer après l'atteinte du maximum autour de l'année 2005. Il est à noter cependant que les concentrations en mercure des grands corégones de 2017 n'augmentent pas graduellement avec la taille du poisson, comme c'est habituellement le cas selon le phénomène de bioaccumulation, par leguel le mercure s'accumule continuellement dans l'organisme. La concentration estimée est au contraire plus élevée chez les spécimens de 400 mm que chez ceux de plus de 500 mm (voir courbe à la figure 4-2). Cette inflexion dans la courbe est causée par un seul spécimen de 557 mm dont la teneur en mercure était de 0,41 mg/kg initialement, mais dont la moyenne des reprises a fourni une valeur de 0,47 mg/kg (voir diagramme de dispersion à l'annexe 4.2.1). Cette teneur a donc été validée par les reprises en laboratoire (0,46, 0,46 et 0,49 mg/kg). Même sans ce spécimen, les concentrations à une longueur de 400 mm demeurent plus élevées qu'en 2014. Ce résultat ne peut être dû à la présence de corégones de forme naine, dont la taille maximale ne dépasserait pas 285 mm (annexe 3). L'examen au terrain a montré qu'un seul spécimen parmi ceux analysés au réservoir de la Sainte-Marquerite 3 pourrait être de forme naine.

4.2.1.2 Grand brochet

Chez le grand brochet, la teneur moyenne observée en 2017 est de 1,40 mg/kg (figure 4-2). Après la mise en eau du réservoir de la Sainte-Marguerite 3, les teneurs chez cette espèce ont augmenté graduellement pour atteindre un maximum de 1,90 mg/kg en 2008. Les valeurs avaient significativement diminué en 2014 (1,31 mg/kg). Le résultat de 2017 montre que cette baisse ne semble pas se poursuivre comme on aurait pu s'y attendre, la teneur étant plutôt semblable à celle de 2014. Comme pour le grand corégone, la tendance temporelle chez le grand brochet ne suit donc pas le cycle habituel d'augmentation puis de diminution des teneurs en mercure.

Figure 4-2 Évolution temporelle des teneurs en mercure des principales espèces de poissons dans le réservoir de la Sainte-Marguerite 3, 2001 à 2017

Étendue des teneurs moyennes obtenues en conditions naturelles pour une longueur standardisée à 400 mm pour le grand brochet. Les plans d'eau retenus pour obtenur cette étendue sont les lacs et les rivières du réservoir SM 3 avant sa mise en eau et le lac Gaillarbois

Notes: Les barres verticales représentent les intervalles de confiance (95 %) des teneurs moyennes estimées. Les teneurs ayant une lettre différente sont significativement différentes car les intervalles de confiance (95 %) ne se chevauchent pas.

Document d'information destiné aux publics concernés par le projet. Pour tout autre usage, communiquer avec : Géomatique, Hydro-Québec Innovation, Équipement et services partagés

^{*}Référence en milieu naturel ou avant le début de la mise en eau du réservoir SM 3 (1998)
**Le réservoir SM 3 avant sa mise en eau (1996) et le lac Gaillarbois (1996 et 2001)
*** Le lac Gaillarbois (1997 et 2001)

Afin d'évaluer si les tendances observées dans les teneurs en mercure des poissons pouvaient être liées à la gestion du niveau du réservoir de la Sainte-Marguerite 3, les niveaux d'eau des dernières années ont été examinés (figure 4-3). L'ennoiement de milieux terrestres favorise la méthylation du mercure déjà présent dans le milieu, ce qui augmente fortement sa biodisponibilité. Les données sur les niveaux d'eau du réservoir de la Sainte-Marguerite 3 montrent cependant que le niveau maximum entre 2014 et l'été 2017 a été en général inférieur à celui des quelques années précédentes, où l'on avait observé une diminution graduelle des teneurs en mercure. Ces données montrent que la tendance à la hausse de 2017 n'est pas concomitante à une gestion du réservoir à un niveau plus élevé qu'au cours des années précédentes. L'accumulation de mercure par les espèces proies se traduit habituellement par une hausse des teneurs chez les espèces prédatrices au cours des années suivantes (Schetagne et Therrien, 2013). Compte tenu de l'augmentation des teneurs chez le grand corégone, il est possible que les concentrations recommencent à augmenter également chez le grand brochet au cours des prochaines années.

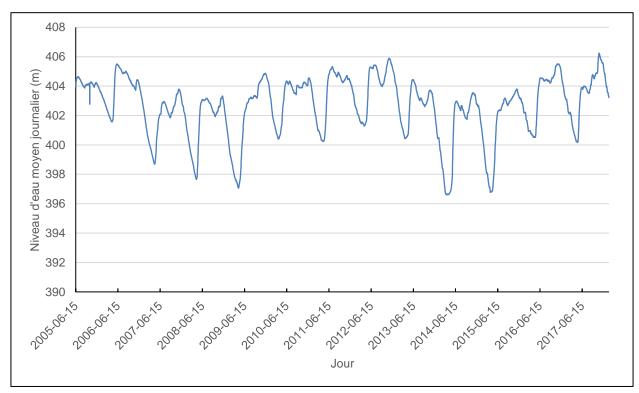
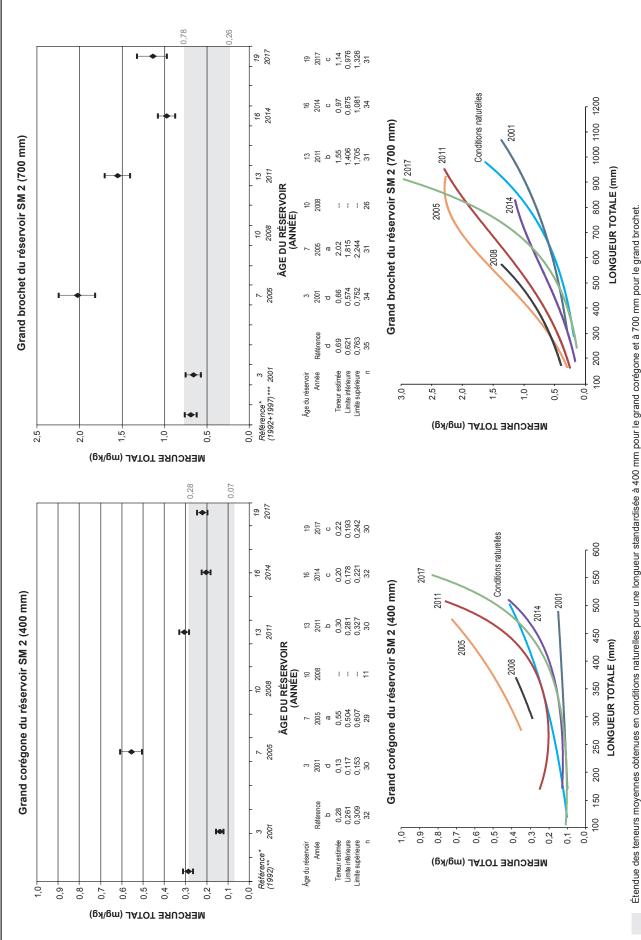


Figure 4-3 Niveau d'eau moyen journalier du réservoir de la Sainte-Marguerite 3 de 2005 à 2017


4.2.2 Réservoir de la Sainte-Marguerite 2

4.2.2.1 Grand corégone

La teneur estimée chez le grand corégone du réservoir de la Sainte-Marguerite 2 en 2017 est de 0,22 mg/kg (figure 4-4). Après la mise en eau du réservoir de la Sainte-Marguerite 3, la teneur chez cette espèce a augmenté dans les deux réservoirs, pour atteindre un maximum de 4 à 9 ans après la mise en eau. Les teneurs ont diminué au cours des années suivantes. Depuis 2011, les teneurs se situent à l'intérieur de l'étendue des valeurs des milieux naturels. L'augmentation observée au réservoir de la Sainte-Marguerite 3 chez cette espèce en 2017 ne s'est pas produite au réservoir de la Sainte-Marguerite 2.

Hydro-Québec Production, Centre de documentation Environnement et collectivités HQ-2019-008

Évolution temporelle des teneurs en mercure des principales espèces de poissons dans le réservoir de la Sainte-Marguerite 2, 2001 à 2017 Figure 4-4

Étendue des teneurs moyennes obtenues en conditions naturelles pour une longueur standardisée à 400 mm pour le grand brochet. Les plans d'eau retenus pour obtenir cette étendue sont les lacs et les rivières du réservoir SM 3 avant sa mise en eau et le lac Gaillarbois

Effectifs insuffisants

*Référence en milieu naturel ou avant le début de la mise en eau du réservoir SM 3 (1998)
**Le réservoir SM 2 1992
*** Le réservoir SM 2 en 1992 et 1997

Notes: Les barres verticales représentent les intervalles de confiance (95 %) des teneurs moyennes estimées. Les teneurs ayant une lettre différente sont significativement différentes car les intervalles de confiance (95 %) ne se chevauchent pas.

Document d'information destiné aux publics concemés par le projet. Pour tout autre usage, communiquer avec : Géomatique, Hydro-Québec Innovation, Équipement et services partagés.

4.2.2.2 Grand brochet

Chez le grand brochet, la teneur estimée en 2017 au réservoir de la Sainte-Marguerite 2 est de 1,14 mg/kg. Après la mise en eau du réservoir de la Sainte-Marguerite 3, la teneur a atteint un maximum entre 2002 et 2010 pour ensuite diminuer au cours des années 2011 et 2014. La baisse ne s'est pas poursuivie en 2017 et la teneur est toujours supérieure à l'étendue des valeurs en milieu naturel.

4.3 Aval immédiat des réservoirs

Les secteurs aval immédiat des réservoirs de la Sainte-Marguerite 2 et de la Sainte-Marguerite 3 ont fait l'objet d'un premier échantillonnage en 2017. Des données ont été recueillies pour le grand corégone, le grand brochet (aval de la Sainte-Marguerite 2 seulement) et l'omble de fontaine (aval de la Sainte-Marguerite 3 seulement).

4.3.1 Aval immédiat du réservoir de la Sainte-Marguerite 3

Chez le grand corégone, la teneur estimée pour l'aval du réservoir de la Sainte-Marguerite 3 est de 0,57 mg/kg (tableau 4-2). Pour l'omble de fontaine, les deux campagnes d'échantillonnage ont permis la capture de 14 spécimens seulement. La teneur estimée pour une longueur de 300 mm est de 0,24 mg/kg. Pour les deux espèces, les valeurs sont significativement plus élevées que celles des milieux naturels.

Tableau 4-2 Teneurs en mercure à l'aval immédiat des réservoirs de la Sainte-Marguerite 2 et de la Sainte-Marguerite 3 chez le grand corégone, le grand brochet et l'omble de fontaine en 2017

					Espè	се			
Secteur		Grand core (400 m	•		Grand bro (700 m			Omble de f (300 m	
	n	Teneur (mg/kg)	I.C. 95 % °	n	Teneur (mg/kg)	I.C. 95 %	n	Teneur (mg/kg)	I.C. 95 %
Teneur moyenne [étendue en milieu naturel (1996, 1997, 2001)] ^a	70	0,10 [0,07-0,28]	0,092-0,105	59	0,30 [0,26-0,78]	0,280-0,331	179	0,16 [0,24-0,38]	0,148-0,171
Aval immédiat SM 3	30	0,57	0,512-0,639	30	S.O.	-	14	0,24	0,186-0,299
Teneur moyenne [étendue en milieu naturel (1992, 1997)] ^b	32	0,28 [0,07-0,28]	0,261-0,309	35	0,69 [0,26-0,78]	0,621-0,763	179	0,16 [0,24-0,38]	0,148-0,171
Aval immédiat SM 2	29	0,29	0,260-0,332	30	1,20	1,041-1,374	0	n.d.	n.d.

a: Teneurs établies avant la mise en eau du réservoir de la Sainte-Marguerite 3 ou en lacs naturels : grand corégone (1996 et 2001), grand brochet (1997 et 2001). L'étendue des teneurs considère celles de certaines régions voisines.

b: Teneurs établies dans le réservoir de la Sainte-Marguerite 2 plus de 38 années après sa mise en eau et considérées comme équivalentes aux teneurs en milieux naturels (voir section 3.5.2): grand corégone (1992), grand brochet (1992 et 1997). L'étendue des teneurs considère celles de certaines régions voisines.

c: C.I. 95 %: intervalle de confiance de la moyenne avec une probabilité de 95 % (α<0,05).

n.d.: Non déterminé en raison d'un nombre insuffisant de captures

s.o. : Sans objet, la répartition de longueur des spécimens ne recoupe pas la longueur standardisée

4.3.2 Aval immédiat du réservoir de la Sainte-Marguerite 2

À l'aval du réservoir de la Sainte-Marguerite 2, les teneurs estimées en 2017 sont de 0,29 mg/kg chez le grand corégone et de 1,20 mg/kg chez le grand brochet. Ces teneurs sont plus élevées que celles des milieux naturels pour les deux espèces.

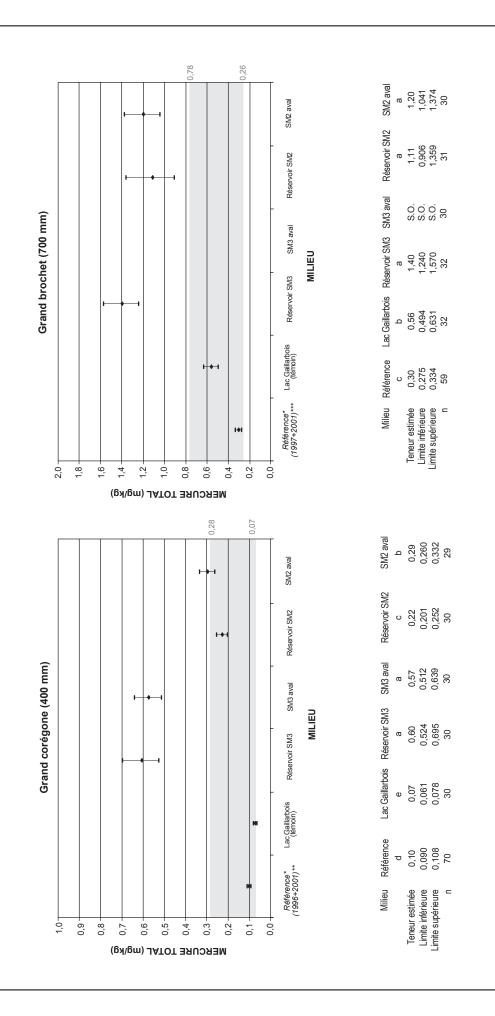
4.4 Variation spatiale

4.4.1 Grand corégone

La teneur estimée pour le grand corégone du lac Gaillarbois en 2017 est de 0,07 mg/kg (figure 4-5). Les teneurs dans les réservoirs de la Sainte-Marguerite 2 et de la Sainte-Marguerite 3 (respectivement 0,22 et 0,60 mg/kg) de même qu'à l'aval immédiat des mêmes réservoirs (0,29 et 0,57 mg/kg) sont significativement plus élevées que celles du lac Gaillarbois.

Les teneurs sont semblables chez les spécimens capturés dans le réservoir de la Sainte-Marguerite 3 et à son aval immédiat. On note cependant qu'elles sont significativement plus élevées à l'aval immédiat du réservoir de la Sainte-Marguerite 2 que dans le réservoir lui-même. Les analyses de contenus stomacaux montrent que les dernières proies consommées par les spécimens analysés étaient des insectes, si bien qu'on ne peut attribuer cette différence à la consommation de poissons par le grand corégone à l'aval immédiat du réservoir.

4.4.2 Grand brochet


Chez le grand brochet, la teneur estimée en 2017 au lac Gaillarbois était de 0,56 mg/kg (figure 4-5). La teneur dans les deux réservoirs, de même qu'à l'aval immédiat du réservoir de la Sainte-Marguerite 2, était significativement plus élevée qu'au lac Gaillarbois. On ne distingue pas de différence significative entre ces trois derniers milieux, où les valeurs variaient entre 1,11 et 1,40 mg/kg.

4.5 Teneurs en mercure pour différentes tailles de consommation

En plus des teneurs estimées aux longueurs standardisées, des estimations ont été réalisées pour une longueur de 350, 450 et 500 mm dans le cas du grand corégone, et de 550 et 1000 mm dans le cas du grand brochet (tableau 4-3).

Comme la teneur en mercure augmente en général avec la longueur en suivant une relation polynomiale, les tendances sont généralement semblables pour les différentes longueurs. Il faut toutefois noter que les concentrations sont typiquement plus élevées chez les tailles supérieures aux longueurs standardisées. Ces spécimens exposent donc les consommateurs à des doses de mercure plus élevées advenant une consommation importante de poissons de taille supérieure à la moyenne. Dans le réservoir de la Sainte-Marguerite 2, la concentration est ainsi de 0,16 mg/kg chez les grands corégones de 350 mm et de 0,48 mg/kg chez ceux de 500 mm, ce qui est trois fois plus élevé.

Figure 4-5 Comparaison spatiale à la longueur standardisée des teneurs en mercure en 2017 chez les principales espèces

Étendue des teneurs moyennes obtenues en conditions naturelles pour une longueur standardisée à 400 mm pour le grand brochet. Les plans d'eau retenus pour obtenir cette étendue sont les lacs et les rivières du réservoir SM 3 avant sa mise en eau et le lac Gaillarbois

*Pétérence en milieu naturel ou avant le début de la mise en eau du réservoir SM 3 (1998)
**Le réservoir SM 3 avant sa mise en eau (1996) et le lac Gaillarbois (1996 et 2001)
*** Le lac Gaillarbois (1997 et 2001)

Notes: Les barres verticales représentent les intervalles de confiance (95 %) des teneurs moyennes estimées. Les teneurs ayant une lettre différente sont significativement différentes car les intervalles de confiance (95 %) ne se chevauchent pas.

Sans objet, la répartition de longueur des spécimens ne recoupe pas la longueur standardisée. S.O.

Teneurs en mercure obtenues pour différentes longueurs de consommation chez les principales espèces de l'aménagement de la Sainte-Marguerite 3 Tableau 4-3

, coo	Âge du réservoir ou			Grand corégone	jone			Grand	Grand brochet	
Neselvoil	de la modification	u	350 mm	400 mm	450 mm	500 mm	u	550 mm	700 mm	1 000 mm
	Avant mise en eau	29	0,09 <i>(a)</i>	0,09 (ab)	0,10 (c)	(<i>q</i>) 01,0	29	0,24 (b)	0,40 (b)	8.0.
	3 ans (2001)	29	0,09 <i>(a)</i>	0,10 <i>(a)</i>	0,13 (ab)	8.0.	30	0,16 (c)	0,28 (c)	0,97 <i>(a)</i>
Lac	7 ans (2005)	56	0,09 <i>(a)</i>	0,10 <i>(a)</i>	0,12 (ab)	0,15 (a)	32	0,24(b)	0,40 (b)	1,04 <i>(a)</i>
Galliarbois (témoin)	10 ans (2008)	30	0,06 (b)	0,07 (c)	(2) 60'0	0,12 (ab)	31	0,28 (ab)	0,47 (ab)	s.o.
	13 ans (2011)	30	(q) L0'0	0,08 (bc)	0,10 (bc)	8.0.	32	0,24 (b)	0,40 (b)	1,10 (a)
	16 ans (2014)	34	0,06 (b)	0,07 (c)	(2) 60'0	0,12 (ab)	40	0,27 (ab)	0,46 (ab)	s.o.
	19 ans (2017)	30	(q) L0'0	0,07 (c)	0,08 (c)	0,10 (b)	32	0,32 (a)	0,55 (a)	s.o.
	Avant mise en eau	70	(p) 60'0	0,10 (d)	0,11 (d)	0,12 <i>(b)</i>	29	0,19 (e)	(e) 0E'0	(q) 56'0
	3 ans (2001)	28	0,61 (ab)	0,66 (ab)	0,72 (ab)	8.0.	31	0,61 (c)	0,71 (d)	s.o.
Réservoir de	7 ans (2005)	31	0,71 <i>(a)</i>	0,78 <i>(a)</i>	0,85 (a)	8.0.	29	0.96 (bc)	1,52 (bc)	s.o.
Marguerite 3	10 ans (2008)	30	0,55 (b)	(q) 09'0	0,66 (bc)	0,72 <i>(a)</i>	30	1,20 (a)	1,90 <i>(a)</i>	s.o.
)	13 ans (2011)	30	0,40 (c)	0,47 (c)	0,56 (c)	8.0.	30	0,96 (abc)	1,83 (ab)	s.o.
	16 ans (2014)	32	0,36 (c)	0,46 (c)	0,58 (c)	8.0.	27	0,73 (d)	1,31 (c)	s.o.
	19 ans (2017)	30	0,51 (b)	0,60 (b)	0,64 (bc)	0,61 (a)	32	0,88 <i>(cd)</i>	1,40 (c)	4,37 <i>(a)</i>
	Avant mise en eau	32	0,24 (c)	0,28 (b)	0,34 (c)	8.0.	35	0,43 (e)	(p) 69'0	s.o.
	3 ans (2001)	30	0,13 (e)	0,13 (d)	0,14 (e)	8.0.	34	0,49 (de)	(p) 99'0	1,19 <i>(b)</i>
Réservoir de	7 ans (2005)	59	0,46 <i>(a)</i>	0,55 (a)	0,66 <i>(a)</i>	8.0.	31	1,49 <i>(a)</i>	2,02 (a)	s.o.
Marguerite 2	10 ans (2008)	7	0,35 (b)	8.0.	8.0.	8.0.	26	1,27 (ab)	8.0.	s.o.
ı	13 ans (2011)	30	0,24 (c)	0,30 (b)	0,44 <i>(b)</i>	0,70 <i>(a)</i>	31	1,07 <i>(b)</i>	1,55 (b)	s.o.
	16 ans (2014)	32	0,16 (d)	0,20 (c)	0,27 (d)	(<i>q</i>) 8£′0	34	0,70 (c)	0,97 (c)	8.0.
	19 ans (2017)	30	0,16 (d)	0,22 (c)	0,31 <i>(cd)</i>	0,48 <i>(b)</i>	31	$0,58\ (cd)$	1,14 (c)	4,37 <i>(a)</i>
lote: Les teneurs a	lote: Les teneurs ayant une même lettre n'ont pas de différ	s de diffé	rence significat	ive entre elles,	car les intervalle	s de confiance (9	15 %), pour	un réservoir donr	ié, se chevauch	ence significative entre elles, car les intervalles de confiance (95 %), pour un réservoir donné, se chevauchent. Les résultats

ß Les telleurs ayant une meme nom pas de unerence significative enue enes, car les institutement plus élevés sont représentés par la lettre (a) et ainsi de suite. Sans objet, la répartition de longueur des spécimens ne recoupe pas la longueur considérée. Note

s.o.

Hydro-Québec Production, Centre de documentation Environnement et collectivités HQ-2019-008

Chez le grand brochet, l'écart entre les petits et les grands spécimens est encore plus grand, les grands spécimens se nourrissant souvent de poissons de plus grande taille dont la teneur en mercure est en général plus élevée. Dans le réservoir de la Sainte-Marguerite 3, la teneur estimée en 2017 est de 0,88 mg/kg pour un spécimen de 550 mm et de 4,37 mg/kg pour un spécimen de 1000 mm, ce qui est cinq fois plus élevé. L'écart des spécimens de longueur standardisée (700 mm) et de 1 000 mm est également important, soit un facteur de 3 à 3,8 pour les réservoirs de la Sainte-Marguerite 3 et de la Sainte-Marguerite 2 respectivement.

4.6 Recommandations de consommation de poissons

Cette section présente les résultats obtenus en 2017 sous une forme permettant la mise à jour, si requise, des recommandations de consommation du Guide alimentaire des poissons et fruits de mer de la Côte-Nord qui a été produit en 2013 (Hydro-Québec et ASSSCN, 2013). Ce guide contient des recommandations de consommation pour les principales espèces de poissons de la région du réservoir de la Sainte-Marguerite 3. Il recommande aux pêcheurs sportifs un nombre de repas de poissons par mois, selon chaque espèce et chaque milieu, permettant de ne pas dépasser les seuils d'exposition au mercure jugés sécuritaires par les organismes locaux de santé publique, tout en bénéficiant de leur excellente valeur nutritive, notamment par la présence d'acide gras de type oméga-3. Dans ce guide, le nombre de repas de poissons par mois est calculé en fonction de la teneur moyenne en mercure des poissons de longueur standardisée, qui correspond le mieux à la taille moyenne des poissons susceptibles d'être capturés et consommés par les pêcheurs sportifs. L'omble de fontaine (ou truite mouchetée) de 300 mm a aussi été considéré pour le secteur aval du réservoir de la Sainte-Marguerite 3.

Les recommandations sont très sécuritaires et sont exprimées en nombre maximal de repas par mois. Le tableau 4-4 présente le nombre de repas par mois recommandé selon la teneur en mercure dans la chair des poissons. Le calcul considère :

- la teneur moyenne en mercure dans le poisson;
- une portion de 230 g (≈1/2 livre) de poisson frais avant cuisson;
- une dose journalière admissible (DJA) de 0,47 μg de mercure par kilogramme de poids corporel;
- une masse corporelle de 60 kg.

Tableau 4-4 Équivalence entre les teneurs en mercure dans les poissons et les recommandations de consommation pour les adultes en général

Teneur en mercure dans la chair de poisson (mg/kg)	Recommandation quantitative (nombre maximal de repas par mois)
≤0,29	Sans restriction
0,30 à 0,49	8
0,50 à 0,99	4
1,00 à 1,99	2
2.00 à 3.75	1

Le tableau 4-5 présente les teneurs en mercure observées en 2017, de même que celles des années de suivi précédentes. Les recommandations actuellement en vigueur apparaissent à l'avant-dernière colonne alors que la dernière colonne fournit la recommandation pour une éventuelle modification en fonction des résultats de 2017. Le principal changement par rapport aux recommandations en vigueur concerne le grand corégone et l'omble de fontaine. Pour le grand corégone du réservoir de la Sainte-Marguerite 3, l'augmentation de la teneur entre 2014 et 2017 se traduit par une restriction d'un niveau dans la recommandation de consommation, qui passerait de huit à quatre repas par mois, alors que le suivi de 2017 indique qu'elle peut passer de 2 à 4 repas par mois en aval immédiat de la Sainte-Marguerite-3 et de 8 à 12 repas ou plus en aval immédiat de la Sainte-Marguerite-2. Chez l'omble de fontaine, la recommandation pourrait passer de 2 à 8 repas par mois en aval immédiat de la Sainte-Marguerite-3.

Dans le cas des jeunes enfants et des femmes enceintes, le guide recommande de consommer deux fois par semaine les poissons et fruits de mer dont la teneur en mercure dans la chair est inférieure à 0,29 mg/kg (en vert dans le tableau 4-5). Il serait donc recommandé de consommer, à cette fréquence, le grand corégone du lac Gaillarbois et du réservoir de la Sainte-Marguerite 2, mais pas celui pêché au réservoir de la Sainte-Marguerite 3. Le grand brochet n'est recommandé dans aucun secteur incluant le lac Gaillarbois.

4.6.1 Aval immédiat des réservoirs

Les zones à l'aval immédiat des réservoirs représentent des cas particuliers. D'abord, elles ont été échantillonnées pour la première fois en 2017 pour le suivi des teneurs en mercure chez les poissons. Ensuite, il s'agit de secteurs peu accessibles pour les pêcheurs sportifs.

L'aval immédiat du réservoir de la Sainte-Marguerite 3, soit entre 1 et 1,6 km en aval de la centrale, est une zone d'eaux rapides accessible uniquement via les accès privés de la centrale (Hydro-Québec) ou en remontant des rapides via le réservoir de la Sainte-Marguerite 2. Les photos 1 à 3 de l'annexe 5 montrent une vue aérienne de la zone située en aval de cette centrale, incluant deux rapides, ainsi qu'une vue au fil de l'eau de la sortie du canal de fuite et d'un des rapides. L'accès pour des pêcheurs sportifs à cet aval immédiat est difficile et il est beaucoup plus aisé de pêcher dans le réservoir de la Sainte-Marguerite 2. Il y a d'ailleurs une rampe d'accès et des chalets sur ses rives.

L'aval immédiat du réservoir de la Sainte-Marguerite 2, soit entre 1 et 2,5 km en aval de la centrale, est une zone d'eaux rapides inaccessible en embarcation (annexe 5, photo 4). En effet, le seul accès est via la centrale de la Sainte-Marguerite 2 (annexe 5, photos 5-6), lequel est privé, fermé par une barrière et nécessite une autorisation pour y accéder (ce que WSP a obtenu pour effectuer l'échantillonnage). De plus, cela nécessite de passer à l'extrémité des deux estacades (annexe 5, photo 7). Il est beaucoup plus simple de pêcher près de la sortie de la centrale, via un accès pédestre, lequel ne permet cependant pas l'utilisation d'une embarcation sans des efforts significatifs (annexe 5, photos 8-11). Il est de notoriété publique que c'est le seul accès utilisé par des pêcheurs, lesquels pêchent depuis la rive.

Bref, les zones en aval immédiat des réservoirs de la Sainte-Marguerite 2 et 3 sont peu accessibles. Le seul endroit où des pêcheurs sont occasionnellement aperçus est l'aval immédiat de la centrale de la Sainte-Marguerite 2.

Teneurs moyennes en mercure (mg/kg) des principales espèces de poissons à la longueur standardisée à l'aménagement hydroélectrique de la Sainte-Marguerite et recommandations de consommation Tableau 4-5

Grand coregone (400 mm) 0,07 0,28 0,10 0,07 0,08 0,10 0,07 0,08 0,10 0,07 0,08 0,10 0,07 0,08 0,10 0,07 0,08 0,10 0,07 0,08 0,11 0,07 0,07 0,08 0,11 0,07 0,07 0,08 0,11 0,14 0,43 0,43 0,47 0,65 0,71 0,18 0,71 0,72 0,82 0,73 0,73 0,82 0,73 0,73 0,82 0,73 0,73 0,82 0,73 0,74 0,42 0,62 0,78 0,78 0,74 0,42 0,69 ela Grand corégone (400 mm) 0,042 0,78 <th>Secteur</th> <th>Espèce</th> <th>Étendues en m</th> <th>Étendues en milieux naturels 1</th> <th></th> <th>Suiv</th> <th>Suivi post-aménagement</th> <th>énageme</th> <th>int</th> <th></th> <th>Guide 2</th> <th>Recommandation</th>	Secteur	Espèce	Étendues en m	Étendues en milieux naturels 1		Suiv	Suivi post-aménagement	énageme	int		Guide 2	Recommandation
Grand brochet (700 mm) 0,07 0,28 0,10 0,1		(longueur de consommation)			2001	2005	2008	2011	2014	2017		proposée
Grand brochet (700 mm) 0,26 0,78 0,26 0,41 0,48 0,43 0,47 0,55 Touladi (600 mm) 0,42 0,82 - 0,82 - - - - - Omble de fontaine (300 mm) 0,24 0,82 - <td></td> <td>Grand corégone (400 mm)</td> <td>0,07</td> <td>0,28</td> <td>0,10</td> <td>0,10</td> <td>0,07</td> <td>0,08</td> <td>0,07</td> <td>0,07</td> <td>12 ou +</td> <td>12 ou +</td>		Grand corégone (400 mm)	0,07	0,28	0,10	0,10	0,07	0,08	0,07	0,07	12 ou +	12 ou +
Touladi (600 mm) 0,42 0,82 -	Lac Gaillarbois	Grand brochet (700 mm)	0,26	0,78	0,26	0,41	0,48	0,43	0,47	0,55	4	4
Omble de fontaine (300 mm) 0,24 0,38 - <	(milieu témoin)	Touladi (600 mm)	0,42	0,82		0,82	1,313				4	4
Grand corégone (400 mm) 0,07 0,28 0,66 0,78 0,60 0,78 0,60 0,78 0,60 0,78 0,60 0,78 1,83 1,31 1,40 Grand brochet (700 mm) 0,42 0,26 0,78 - - - - - - - Grand brochet (700 mm) 0,07 0,28 - <td< td=""><td></td><td>Omble de fontaine (300 mm)</td><td>0,24</td><td>0,38</td><td>,</td><td></td><td></td><td></td><td></td><td>,</td><td>12 ou +</td><td>12 ou +</td></td<>		Omble de fontaine (300 mm)	0,24	0,38	,					,	12 ou +	12 ou +
Grand brochet (700 mm) 0,26 0,78 0,71 1,52 1,90 1,83 1,31 1,40 Touladi (600 mm) 0,07 0,82 -		Grand corégone (400 mm)	20,0	0,28	99'0	0,78	09'0	0,47	0,46	09'0	8	4
Grand corégone (400 mm) 0,42 0,82 -	Réservoir de la	Grand brochet (700 mm)	0,26	0,78	0,71	1,52	1,90	1,83	1,31	1,40	2	2
Grand brochet (700 mm) 0,07 0,28 -		Touladi (600 mm)	0,42	0,82							2	2
Grand brochet (700 mm) 0,26 0,78 - - - - - 5.0 Touladi (600 mm) 0,42 0,82 - <		Grand corégone (400 mm)	0,07	0,28			•			0,57	2	4
Touladi (600 mm) 0,42 0,82 -	Aval immédiat du	Grand brochet (700 mm)	0,26	0,78				ı	•	s.o.	2	2
Omble de fontaine (300 mm) 0,24 0,38 - <	reservoir de la Saimte- Marguerite 3	Touladi (600 mm)	0,42	0,82	ı		ı	ı		ı	2	2
Grand corégone (400 mm) 0,07 0,28 0,13 0,55 0,434 0,30 0,20 0,22 Grand brochet (700 mm) 0,26 0,78 -		Omble de fontaine (300 mm)	0,24	0,38				1	-	0,32	2	8
Grand brochet (700 mm) 0,26 0,78 0,66 2,02 1,744 1,55 0,97 1,14 Grand corégone (400 mm) 0,07 0,28 - - - - - 0,29 Grand brochet (700 mm) 0,07 0,28 - - - - - 1,20 Omble de fontaine (300 mm) 0,07 0,38 - - - - - -	Réservoir de la	Grand corégone (400 mm)	70,0	0,28	0,13	0,55	0,434	0,30	0,20	0,22	12 ou +	12 ou +
Grand corégone (400 mm) 0,07 0,28 - - - - - 0,29 Grand brochet (700 mm) 0,07 0,07 0,28 - <td>Sainte-Marguerite 2</td> <td>Grand brochet (700 mm)</td> <td>0,26</td> <td>0,78</td> <td>99'0</td> <td>2,02</td> <td>1,744</td> <td>1,55</td> <td>0,97</td> <td>1,14</td> <td>2</td> <td>2</td>	Sainte-Marguerite 2	Grand brochet (700 mm)	0,26	0,78	99'0	2,02	1,744	1,55	0,97	1,14	2	2
Grand brochet (700 mm) 0,26 0,78 - - - - - - 1,20 Grand corégone (400 mm) 0,07 0,28 -	Aval immédiat du	Grand corégone (400 mm)	70,0	0,28		,	ı		ı	0,29	8	12 ou +
Grand corégone (400 mm) 0,07 0,28 Omble de fontaine (300 mm) 0,24 0,38	reservoir de la Sainte- Marguerite 2	Grand brochet (700 mm)	0,26	0,78					ı	1,20	2	2
Omble de fontaine (300 mm) 0,24 0,38	orici 150	Grand corégone (400 mm)	0,07	0,28							12 ou +	12 ou +
	Estante	Omble de fontaine (300 mm)	0,24	0,38				,			12 ou +	12 ou +

Note: Les couleurs indiquent les recommandations de consommation en nombre de repas par mois.

 12 ou plus
 8
 4
 2
 1
 <1</th>
 <1</th>

 1 Valeurs provenant de Massicotte et al. (2002), Therrien (2005) et GENIVAR (2006b).

² Le Guide alimentaire des poissons et fruits de mer de la Côte-Nord (Hydro-Québec et ASSSCN, 2013). Les valeurs correspondent au nombre maximum de repas par mois recommandé.

 $^{^3}$ Valeur imprécise (GENIVAR, 2009); la relation entre la taille et le mercure est faible ($\mathbb{R}^2 < 0.7$).

⁴ Valeurs extrapolées à partir de celles de 2005 et 2011.

s.o.: Sans objet, la répartition de longueur des spécimens ne recoupe pas la longueur standardisée.

4.7 Contenus stomacaux

L'analyse du régime alimentaire a été effectuée sur le grand corégone, la seule espèce cible non piscivore, et trois espèces piscivores capturées dans la région du complexe de la Sainte-Marguerite en 2017, soit le grand brochet, l'omble de fontaine et le touladi. Les résultats concernant les proportions d'estomacs non vides sont tout de même présentés dans le tableau 4-6 pour toutes ces espèces.

Tableau 4-6 Proportion d'estomacs non vides chez les espèces échantillonnées dans la région de l'aménagement de la Sainte-Marguerite-3 en 2017

Espèce/secteur		Nombre de s	pécimens exami	inés	Total
	Estomacs vides	Estomacs non vides	% estomacs non vides	Estomacs avec chyme seulement	
Grand brochet					
Réservoir SM 3	14	30	68%	7	44
Aval SM3	8	34	81%	6	42
Réservoir SM 2	24	18	43%	6	42
Aval SM2	43	43	50%	26	86
Lac Gaillarbois	25	33	57%	12	58
Total Grand brochet	114	158	58%	57	272
Grand corégone					
Réservoir SM 3	29	30	51%	13	59
Aval SM3	17	47	73%	20	64
Réservoir SM 2	18	28	61%	18	46
Aval SM2	21	47	69%	29	68
Lac Gaillarbois	34	43	56%	36	77
Total Grand corégone	119	195	62%	116	314
Omble de fontaine					
Aval SM3	1	13	93%	3	14
Total Omble de fontaine	1	13	93%	3	14
Touladi					
Lac Gaillarbois	1	1	50%	0	2
Total Touladi	1	1	50%	0	2

Grand corégone

Chez le grand corégone, l'examen de 79 estomacs non vides ne contenant pas uniquement du chyme indique que la majorité de ces estomacs contenait des insectes, deux du benthos, un des parasites et quatre des poissons. Selon la littérature disponible (Scott et Crossman, 1974), cette espèce s'alimente habituellement de plancton, d'organismes benthiques et d'insectes. Dans le cas du présent suivi, ce sont des insectes, plus précisément des papillons de la tordeuse des bourgeons de l'épinette (Choristoneura fumiferana), qui ont été retrouvés en majorité dans l'estomac des grands corégones capturés. Toutefois, du poisson a également été retrouvé dans l'estomac de quatre spécimens. Ces quatre grands corégones ont été capturés dans trois secteurs différents soit dans le lac Gaillarbois (un spécimen, soit 14 % des estomacs non vides

sans chyme), en aval immédiat du réservoir de la Sainte-Marguerite 3 (deux spécimens, soit 7 %) et à l'aval immédiat du réservoir de la Sainte-Marguerite 2 (un spécimen, soit 6 %). Les espèces retrouvées dans l'estomac de ces poissons étaient des chabots tachetés (Cottus bairdii), des mulets de lac (Couesius plumbeus) et des grands corégones (dans l'un des guatre spécimens). Il n'est pas complètement nouveau de retrouver du poisson dans le régime alimentaire du grand corégone puisque la littérature fait également mention de petits poissons présents occasionnellement dans l'estomac de cette espèce (Scott et Crossman, 1974). Cependant, il et plausible que les grands corégones retrouvés en aval immédiat des réservoirs de la Sainte-Marguerite 2 et de la Sainte-Marguerite 3 consomment davantage de poisson qu'en milieu naturel, comme observé au complexe La Grande (Schetagne et Therrien, 2013). En effet, le passage des poissons dans les turbines des centrales représente une source de nourriture facilement accessible. C'est d'ailleurs dans les estomacs des trois corégones capturés en aval immédiat des réservoirs de la Sainte-Marquerite 2 et de la Sainte-Marquerite 3 que les plus grandes quantités de poissons ont été observées (5 à 7 spécimens par grand corégone). L'ensemble des données relatives aux contenus stomacaux des poissons capturés lors de la campagne 2017 est présenté à l'annexe 6.

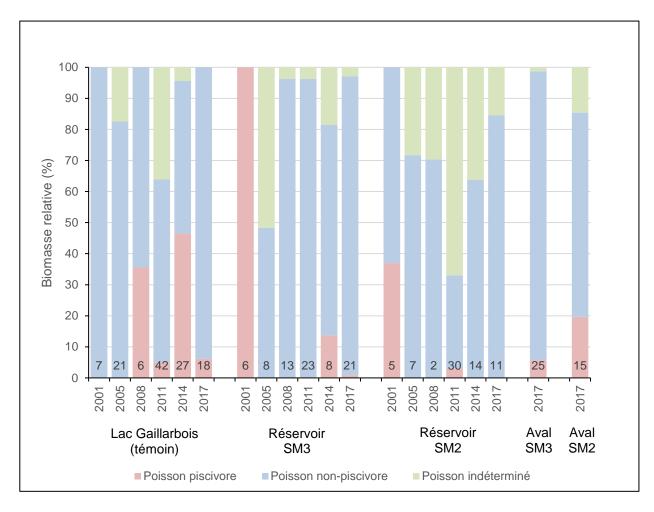
Touladi et omble de fontaine

Seulement deux touladis (un estomac non vide) et 14 ombles de fontaine (10 estomacs non vides sans chyme) ont été capturés et analysés au total pour l'ensemble des secteurs. En raison de ce faible nombre de captures, il est difficile d'identifier des tendances concernant les contenus stomacaux de ces deux espèces. Le seul estomac de touladi, récolté dans le lac Gaillarbois, contenait des insectes. Parmi les 10 estomacs d'omble de fontaine provenant tous de l'aval immédiat de la centrale de la Sainte-Marguerite 3, seulement trois contenaient des poissons non identifiables.

Grand brochet

L'occurrence et la biomasse des grands groupes d'organismes identifiés dans les contenus stomacaux de grands brochets sont présentées dans les tableaux 4-7 et 4-8 et la figure 4-5, qui illustrent la biomasse relative de poissons piscivores et non piscivores contenus dans les estomacs non vides du grand brochet depuis le début du suivi en 2001.

Plusieurs des estomacs des grands brochets examinés étaient vides (114 sur 272), mais la majorité (58 %) n'était pas vide (tableau 4-6). Parmi les estomacs non vides, 21 % ne contenait que du chyme. Plus spécifiquement, au lac Gaillarbois, 21 % des estomacs non vides ne contenaient que du chyme. Cette proportion était de 7 sur 44 (16 %) dans le réservoir de la Sainte-Marguerite 3, 6 sur 42 (14 %) dans le réservoir de la Sainte-Marguerite 2, 5 sur 42 (12 %) en aval du réservoir de la Sainte-Marguerite 3 et 26 sur 86 (30 %) en aval du réservoir de la Sainte-Marguerite 2.


Occurrence (%) des grands groupes d'organismes identifiés dans les contenus stomacaux des grands brochets capturés en 2017 Tableau 4-7

William		Longueur				Poissons				Щ	Espèces de poisson	poisson				
longueur	d'estomacs ^a	moyenne (mm)	Insectes	moyenne Insectes Mammifères Poissons (mm)	Poissons	et insectes	Meunier rouge	Meunier noir	Chabot tacheté	Grand corégone	Méné de lac	Grand brochet	Lotte	Fouille- roche gris	Omble de fontaine	Indét.
Réservoir SM3																
<400	Ŋ	171	0	0	100	0	0	0	100	0	0	0	0	0	0	0
400 - 750	11	929	о	0	91	0	18	0	0	45	0	0	6	0	0	18
>750	S	829	0	0	100	0	0	0	0	80	0	0	0	0	0	20
Total	21	540	2	0	92	0	10	0	24	43	0	0	2	0	0	4
Aval SM3																
<400	0	QN	0	0	0	0	0	0	0	0	0	0	0	0	0	0
400 - 750	25	575	0	0	100	0	0	0	0	26	12	0	0	0	12	24
>750	0	ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	25	575	0	0	100	0	0	0	0	26	12	0	0	0	12	24
Réservoir SM2																
<400	2	367	0	0	20	20	0	20	0	20	0	0	0	0	0	0
400 - 750	o	515	22	11	29	0	0	7	7	7	1	0	0	0	0	22
>750	0	ND	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	11	488	18	6	64	6	0	18	6	18	6	0	0	0	0	18
Aval SM2																
<400	-	375	0	0	100	0	0	0	0	0	0	0	0	0	0	100
400 - 750	13	208	∞	0	92	0	31	0	0	0	31	0	0	0	0	31
>750	_	869	0	0	100	0	0	0	0	0	0	100	0	0	0	0
Total	15	523	7	0	93	0	27	0	0	0	27	7	0	0	0	33
Lac Gaillarbois (témoin)	oin)															
<400	7	229	0	0	100	0	0	0	0	20	0	0	0	20	0	0
400 - 750	41	633	7	0	93	0	0	21	7	20	0	7	7	0	0	7
>750	2	822	0	0	100	0	0	20	0	20	0	0	0	0	0	0
Total	18	609	9	0	94	0	0	17	9	44	0	9	9	9	0	9
a: Nombre de contenus stomacaux non vides et contenant autre chose que du	inus stomacaux	non vides et	t contenant	t autre chose qu	ue du chyme.	o.										

ND : non disponible

Aménagement hydroélectrique de la Sainte-Marguerite-3 Suivi environnemental 2017 en phase exploitation. Suivi des teneurs en mercure dans la chair des poissons. Février 2019.

Hydro-Québec Production, Centre de documentation Environnement et collectivités HQ-2019-008

Note : les nombres de spécimens sont indiqués au bas du graphique (pour les cotes de réplétion de 2 à 5)

Figure 4-5 Biomasse relative des poissons piscivores et non piscivores dans les contenus stomacaux des grands brochets dans la région de l'aménagement de la Sainte-Marguerite-3, de 2001 à 2017

L'analyse du contenu des estomacs non vides indique l'occurrence de différents taxons de proies (insectes, mammifères et poissons) chez les grands brochets capturés. Toutefois, le régime alimentaire des grands brochets est largement dominé par le poisson dans tous les secteurs, autant en termes d'occurrence qu'en termes de biomasse, et ce, quelle que soit la classe de taille considérée (tableaux 4-7 et 4-8). La seule exception concerne la classe de taille < 400 mm dans le réservoir de la Sainte-Marguerite 2 où 50 % des estomacs analysés contenaient du poisson et des insectes. La biomasse que représentent les poissons est cependant supérieure à celle des insectes. Un mammifère a par ailleurs été retrouvé dans l'estomac d'un des grands brochets capturés dans le réservoir de la Sainte-Marguerite 2. Il s'agissait d'un condylure à nez étoilé (Condylura cristata).

De façon générale, les poissons les plus abondants retrouvés dans les estomacs des grands brochets étaient des spécimens d'espèces indéterminées, des grands corégones et des meuniers. Cependant, des différences sont observées entre les secteurs (tableau 4-8). Au lac Gaillarbois, dans le réservoir de la Sainte-Marguerite 3 et en son aval immédiat, les grands corégones constituent les proies les plus fréquentes des grands brochets capturés.

Tableau 4-8 Biomasse (poids humide) des grands groupes d'organismes identifiés dans les contenus stomacaux des grands brochets capturés en 2017 dans la région de l'aménagement hydroélectrique de la Sainte-Marguerite-3

		1	Managarata									Esp	pèce de poiss	on				
Milieu	Nombre d'estomacs*	Longueur moyenne (mm)	Masse totale du contenu stomacal (g)	Insectes**	Mammifère	Poisson	Poisson et insectes	Meunier rouge	Meunier noir	Meunier noir et grand corégone	Chabot tacheté	Granc corégone	Méné de lac	Grand brochet	Lotte	Fouille- roche gris	Omble de fontaine	Indét.
Lac Gaillarbois (te	témoin)																	
<400	2	229	52,9			52,9						50,6				2,3		
400 - 750	14	633	586,1	14,7		571,4			53,6	145,3	14,3	224,6		61,5	72,1			
>750	2	822	1555,1			1555,1			25,1			1530						
Total	18	609	2194,1	14,7		2179,4			78,7	145,3	14,3	1805,2		61,5	72,1	2,3		
Réservoir SM3																		
<400	5	171	7,4			7,4					7,4							
400 - 750	11	576	1020,9	0		1020,9		123,3				843,8			17			36,8
>750	5	829	941,9			941,9						920,7						21,2
Total	21	540	1970,2	0		1970,2		123,3			7,4	1764,5			17			58
Aval SM3																		
<400	0	ND																
400 - 750	25	575	991,9			991,9						897,7	24,8				56,4	13,1
>750	0	ND																
Total	25	575	991,9			991,9						897,7	24,8				56,4	13,1
Réservoir SM2																		
<400	2	367	19,3			13,3	6			13,3								6
400 - 750	9	515	123,6	9,9	27,1	86,6			27,8		2,1	44,1	2,3					10,3
>750	0	ND																
Total	11	488	142,9	9,9	27,1	99,9	6		27,8	13,3	2,1	44,1	2,3					16,3
Aval SM2																		
<400	1	375	1,8			1,8												1,8
400 - 750	13	508	247,7	2,5		242,7		141,9					60					43,3
>750	1	869	60,5			60,5								60,5				
Total	15	523	310	2,5		305		141,9					60	60,5				45,1

^{*} Nombre d'estomacs non vides et contenant autre chose que du chyme.

^{**} Il s'agit d'une masse partielle, car le contenu de quelques estomacs n'a pas été pesé.

En effet, les grands corégones représentent respectivement 44,4 %, 42,9% et 56,0 % des espèces de poissons observés dans les estomacs des grands brochets dans ces trois secteurs. En aval immédiat du réservoir de la Sainte-Marguerite 2, ce sont les spécimens indéterminés qui sont les plus fréquents (33,3 %), suivis du meunier rouge et du mulet de lac qui représentent chacun 26,7 % des espèces de poissons présentes dans les estomacs des grands brochets. Enfin, pour le réservoir de la Sainte-Marguerite 2, deux espèces de poissons, soit le meunier noir et le grand corégone ainsi que des spécimens dont l'espèce est indéterminée représentent la majorité des proies, cumulant chacun 18,2 % des espèces de poissons.

La biomasse des poissons retrouvés dans les estomacs des grands brochets du lac Gaillarbois (2179,4 g) était supérieure à celle de tous les autres secteurs à l'étude (tableau 4-8). Cette biomasse est formée majoritairement par des grands corégones, mais inclut aussi une grande variété d'autres espèces telles que le chabot tacheté, le meunier noir, la lotte, le fouille-roche zébré et le grand brochet. La biomasse des poissons retrouvés dans les estomacs des grands brochets du réservoir de la Sainte-Marguerite 2 était la plus faible. Celle-ci était formée par des meuniers noirs, des chabots tachetés, des grands corégones et des mulets de lac.

La figure 4-5 montre qu'en 2017, ce sont des espèces de poissons non piscivores qui étaient les proies principales des grands brochets capturés, et ce, pour tous les secteurs à l'étude.

5. Conclusion

Les résultats du suivi de 2017 ne montrent pas de variations significatives des teneurs en mercure chez le grand corégone et le grand brochet du lac Gaillarbois, utilisé comme milieu témoin. Ces teneurs demeurent relativement faibles et stables depuis le début des mesures en 1997.

Au réservoir de la Sainte-Marguerite 3, les teneurs chez les deux espèces ont augmenté de façon significative après la mise en eau du réservoir, qui a débuté en 1998. Les teneurs ont ensuite amorcé un déclin à partir de 2008 chez le grand corégone et à partir de 2014 chez le grand brochet. Cette diminution s'est cependant interrompue, les teneurs de 2017 étant supérieures à celles de 2014 chez le grand corégone, et équivalentes dans le cas du grand brochet. Cet arrêt dans la baisse attendue des teneurs ne semble pas s'expliquer par une gestion du réservoir de la Sainte-Marguerite 3 à un niveau plus élevé qu'au cours des années précédentes.

Au réservoir de la Sainte-Marguerite 2, la teneur en mercure chez le grand corégone se situe à l'intérieur de celles des milieux naturels depuis 2011. Chez le grand brochet cependant, les concentrations demeurent supérieures à celles des milieux naturels et n'ont pas diminué entre 2014 et 2017.

Les résultats recueillis pour une première année à l'aval immédiat des réservoirs montrent que les teneurs chez le grand brochet sont équivalentes à celles des réservoirs correspondants. Chez le grand corégone cependant, les teneurs étaient plus élevées à l'aval du réservoir de la Sainte-Marguerite 2 que dans le réservoir lui-même.

En se basant sur les résultats de l'année 2017, les recommandations de consommation de poisson du Guide alimentaire des poissons et fruits de mer de la Côte-Nord ont été réévaluées. La plupart des recommandations en vigueur n'auraient pas à être modifiées. Font exception le grand corégone du réservoir de la Sainte-Marguerite 3, où la recommandation actuelle de huit repas par mois pourrait toutefois être abaissée à quatre repas par mois, alors qu'elle serait augmenté à 4 repas par mois en aval immédiat de la Sainte-Marguerite-3 et à 12 repas par mois et plus à l'aval immédiat de la Sainte-Marguerite-2, ainsi que l'omble de fontaine à l'aval immédiat de la Sainte-Marguerite-3, où la recommandation passerait de 2 à 8 repas par mois. Ces recommandations seront présentées à l'agence de santé pour approbation.

6. Bibliographie

BELLES-ISLES, M., BILODEAU, F. 2015. Aménagement hydroélectrique de la Sainte-Marguerite-3, Suivi environnemental 2014 en phase exploitation – Suivi des teneurs en mercure dans la chair des poissons. Rapport produit pour Hydro-Québec par WSP Canada inc. 46 p.et annexes.

BRUCE, W.J. 1984. Potential fisheries yield from smallwood reservoir, western Labrador, with special emphasis on lake whitefish. North American Journal of Fisheries Management. Vol. 4: pp. 48-66.

BÜCKMANN, A. 1929. Les méthodes biologiques de recherche sur les pêcheries maritimes. Traduit de Die Methodik fischereibiologischer Untersuchungen an Meeresfischen. Handbuch der biologischen Arbeitsmethoden. Berlin, Urban and Schwarsenberg. 194 p.

ENVIRONMENT CANADA. 1979. Analytical methods manual. Inland Waters Directorate, Ottawa.

FORTIN, R., GENDRON, M. 1990. Reproduction, croissance et morphologie des grands corégones (Coregonus clupeaformis) nains et normaux du réservoir Outardes 2 (Québec). Can. J. Zool. Vol. 68 : 17-25.

GENIVAR. 2006a. Complexe de la rivière Romaine – Faune ichtyenne : Rapport d'inventaire 2005. GENIVAR Groupe Conseil inc. à Hydro-Québec Équipement, Unité Environnement. 222 p. et annexes.

GENIVAR. 2006b. Aménagement hydroélectrique Sainte-Marguerite. Suivi environnemental 2005. Évolution des communautés de poissons et du mercure. Rapport présenté à Hydro-Québec par GENIVAR. 79 p. et annexes.

GENIVAR. 2009. Aménagement hydroélectrique Saint-Marguerite 3. Suivi environnemental 2008. Évolution du mercure dans la chair des poissons. Rapport présenté à Hydro-Québec par GENIVAR. 53 p. et annexes.

GENIVAR. 2012. Aménagement hydroélectrique Sainte-Marguerite-3. Suivi environnemental 2011. Évolution des communautés de poissons et du mercure. Rapport présenté à Hydro-Québec par GENIVAR. 82 p. et annexes.

GENIVAR, HYDRO-QUÉBEC. 2005. Complexe de la Romaine – Mercure dans la chair des poissons. Rapport conjoint de GENIVAR Groupe Conseil inc. et Hydro Québec pour Hydro-Québec. 67 p. et annexes.

HALL, B.D., BODALY, R.A., FUDGE, J.W.M., ROSENBERG, D.M. 1997. Food as the dominant pathway of methylmercury uptake by fish. Water, Air and Soil Pollution, vol. 100: 13-24.

HYDRO-QUÉBEC. 1994. Projet Sainte-Marguerite 3. Conditions des décrets des gouvernements provincial et fédéral et engagements d'Hydro-Québec.

HYDRO-QUÉBEC PRODUCTION, AGENCE DE LA SANTÉ ET DES SERVICES SOCIAUX DE LA CÔTE-NORD. 2013. Le guide alimentaire des poissons et fruits de mer de la Côte-Nord. Montréal, Hydro-Québec. 58 p.

JACQUES WHITFORD ENVIRONMENT LTD, GROUPE-CONSEIL GENIVAR INC. 2002. Analysis of mercury data from Newfoundland and Labrador hydroelectric reservoirs. Prepared for Newfoundland and Labrador Hydro environmental services department, St.John's, Newfoundland. 32 p. et annexes.

MASSICOTTE, B., VÉZINA, C. 1998. Aménagement hydroélectrique Sainte Marguerite 3, suivi environnemental. Étude complémentaire sur l'état de référence de la contamination en mercure des organismes aquatiques et détermination d'un lac témoin. Rapport du Consortium Roche-Dessau pour Hydro-Québec. 115 p. et annexes.

MASSICOTTE, B., SCHETAGNE, R., VÉZINA, C. 2002. Aménagement hydroélectrique Sainte Marguerite 3, suivi environnemental 2001. Teneur en mercure dans la chair des poissons. Rapport Roche Ltée Groupe-conseil pour Hydro-Québec. 82 p. et annexes.

MAXXAM ANALYTIQUES INC. 2018. Analyses de la teneur en mercure dans la chair de poissons. Rapport de contrôle de la qualité 2017 présenté à Hydro-Québec. 20 p. et annexes

SCHETAGNE, R., DOYON, J.-F., FOURNIER, J.-J. 2000. Export of mercury downstream from reservoirs. The Science of total Environment, vol. 260: p. 135-145.

SCHETAGNE, R., THERRIEN, J., LALUMIÈRE, R. 2002. Suivi environnemental du complexe La Grande. Évolution des teneurs en mercure dans les poissons. Rapport synthèse 1978-2000. Rapport conjoint Groupe-conseil GENIVAR inc. et Hydro-Québec. 193 p. et annexes.

SCHETAGNE, R., THERRIEN, J., 2013, Suivi environnemental du complexe La Grande. Évolution des teneurs en mercure dans les poissons. Rapport synthèse 1978-2012. Rapport conjoint GENIVAR inc. et Hydro-Québec Production. 174 p. et annexes.

SCOTT, W.B., CROSSMAN, E.J. 1974. Poissons d'eau douce du Canada. Office de recherches sur les pêcheries au Canada, Bulletin 184. Ottawa, Canada. 1026 p.

THERRIEN, J., 2006. Suivi environnemental du réservoir Robertson (1990-2005). Évolution des teneurs en mercure dans la chair des poissons. Rapport de GENIVAR Groupe conseil inc. à Hydro-Québec, Territoires Nord-Est et Réseaux autonomes, 56 p. et annexes.

TREMBLAY, G, LEGENDRE, P, VERDON, R, DOYON, J.-F., SCHETAGNE, R. 1998. Polynomial regression analysis with indicator variables for the interpretation of monitoring data on mercury levels in fish. Biogeochemistry. 40:189–201.

TREMBLAY, G., DOYON, J.-F., SCHETAGNE, R. 1996. Réseau de suivi environnemental du complexe La Grande. Démarche méthodologique relative au suivi des teneurs en mercure des poissons. Rapport conjoint du Groupe-conseil GENIVAR inc. et d'Hydro-Québec. 33 p. et annexes

Annexe 1.1.	
Stade de maturité des gonades de poissons selon l'échelle de Bückmann (1929)	

Annexe 1.1. Échelle de maturation des gonades selon Buckmann (1929)

0: 1		Sexe			
	Stade	Mâle	Femelle		
1	Immature	Gonade très petite, disposée tout contre la colonne vertébrale. Elle est incolore ou grisâtre et plus ou moins transparente.	Gonade très petite, disposée tout contre la colonne vertébrale. Elle est incolore ou grisâtre et plus ou moins transparente. Peut être rosée avec vaisseaux sanguins. oeufs invisibles à l'œil nu.		
2	Début ou reprise de l'évolution sexuelle	Testicules gris-rose, translucides. Leur longueur atteint ou dépasse légèrement la moitié de la longueur de la cavité abdominale. Apparition de replis.	Ovaires gris-rose, translucides. Leur longueur atteint ou dépasse légèrement la moitié de la longueur de la cavité abdominale. Oeufs visibles à la loupe.		
3	Développement en cours	Testicules opaques, rougeâtres et vascularisés. Ils occupent environ la moitié de la cavité abdominale. Les replis de la gonade sont gros et très apparents.	Ovaires opaques, rougeâtres et vascularisés. Ils occupent environ la moitié de la cavité abdominale. oeufs visibles à l'œil nu (petits points blanchâtres).		
4	Développement achevé	Testicules blanc-rougeâtre, gros et gonflés. La laitance ne s'écoule pas sous pression. La gonade occupe les 2/3 de la cavité abdominale.	Ovaires orangés ou rougeâtres, gros et gonflés. Oeufs opaques et nettement visibles (gros, mais encore attachés ensemble). La gonade occupe les 2/3 de la cavité abdominale.		
5	Préponte	Les testicules remplissent la cavité abdominale : ils sont blanc laiteux. Le sperme, liquide et crémeux, peut s'écouler si on exerce une pression.	Oeufs parfaitement arrondis, gros et libres dans la gonade. Certains commencent à devenir translucides et sont prêts pour la fraie.		
6	Ponte	Le sperme s'écoule de lui-même en sortant le poisson de l'eau ou suite à une légère pression.	Les œufs s'écoulent d'eux-mêmes sous une simple pression. La plupart des œufs sont translucides; quelques-uns restent opaques.		
7	Postponte	Les testicules ne sont pas encore entièrement vides; un peu de sperme liquide reste dans la gonade.	Quelques œufs libres sont encore dans la gonade; ils sont translucides. Il n'y a plus d'œufs opaques.		
8	Récupération	Testicules vides et rougeâtres; ils sont flasques.	Gonades flasques de rosée à brunâtre et vides. Quelques œufs résiduels sont en train de se résorber.		

Note : les caractères descriptifs énoncés ici peuvent varier selon le groupe d'espèces considérées. Cette classification peut toutefois servir pour la plupart des espèces.

Annexe 1.2. Clé d'identification des grands corégones de forme naine	

Annexe 1.2. Clé d'identification de grands corégones de forme naine

1.	a)	Longueur totale > 280 mm	Normal
	b)	Longueur totale <= 280 mm	voir 2
2.	a)	Longueur totale <=280 mm et mature	
		(stade 3 en juillet ou plus tard ou stade >3)	Nain
	b)	Longueur totale <= 280 mm et immature	voir 3
3.	a)	Âge = 1 an et longueur totale <= 70 mm	Nain
	b)	Âge = 1 an et longueur totale > 140 mm et <= 280 mm	Normal
	c)	Âge = 1 an et longueur totale > 70 mm et <= 140 mm	Indéterminé
	d)	Âge = 2 ans et longueur totale < 110 mm	Nain
	e)	Âge = 2 ans et longueur totale > 140 mm et <= 280 mm	Normal
	f)	Âge = 2 an et longueur totale >= 110 mm et <= 140 mm	Indéterminé
	g)	Âge de 3 à 5 ans, immature et longueur totale <= 280 mm	Indéterminé
	h)	Âge > 5 ans, immature et longueur totale <= 280 mm	Nain

ANNEXE 2 CAPTURES EFFECTUÉES DANS LA RÉGION DE L'AMÉNAGEMENT DE LA SAINTE-MARGUERITE-3 EN 2017

Annexe 2 Captures effectuées dans la région de l'aménagement de la Sainte-Marguerite-3 en 2017

MILIEU	COCL	COCN	ESLU	LOLO	COPL	COBA	CACO	CACA	SAFO	SANA	TOTAL
Lac Gaillarbois	124	147	59		38	1	39	6		2	416
Sainte-Marguerite 3	71		44	3			2	20			140
Aval Sainte-Marguerite-3	65		42	1	4		6	72	14		204
Sainte-Marguerite 2	47		42	1	9		167	25			291
Aval Sainte-Marguerite-2	69		87	12	3		45	198			414
TOTAL	376	147	274	17	54	1	259	321	14	2	1465

Codes : COCL = grand corégone

COCN = grand corégone (forme naine)

ESLU = grand brochet

LOLO = lotte

COPL = mulet de lac

COBA = chabot tacheté

CACO = meunier noir

CACA = meunier rouge

SAFO = omble de fontaine

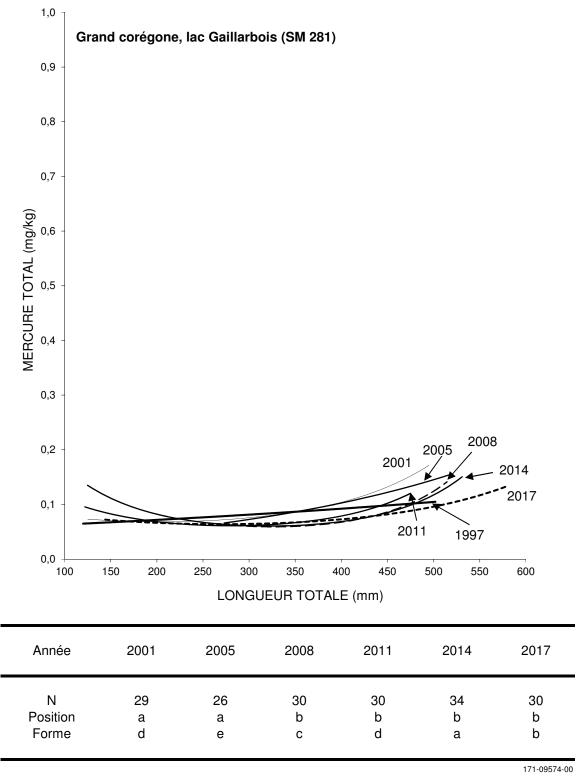
SANA = touladi

ANNEXE 3 Évolution des teneurs en mercure des poissons de la région de l'aménagement de la Sainte-Marguerite-3 – statistiques descriptives – tests de comparaisons multiples issus d'analyses de régression polynomiale avec variables indicatrices

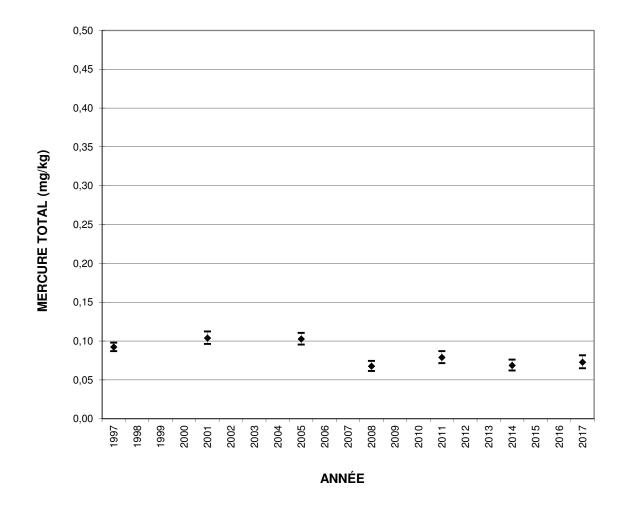
ANNEXE 3.1.1. Évolution temporelle des teneurs en mercure du grand corégone dans les milieux naturels de la région du complexe Sainte-Marguerite

STATISTIQUES DESCRIPTIVES ET TEST DE COMPARAISONS MULTIPLES

	Nombre		Mercure total (mg/kg)								Longueur totale (mm)		
Milieu	total ¹	ST ^{2,3} (400 mm)	CO ^{2,4} (350 mm)	CO ^{2,4} (450 mm)	CO ^{2,4} (500 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.	
Grand corégone													
Lac Gaillarbois													
1997	29	0,09 (ab)	0,09 (a)	0,10 (c)	0,10 (b)	0,09	0,05	0,14	25	327	120	502	
2001	29	0,10 (a)	0,09 (a)	0,13 (ab)	S.O.	0,09	0,05	0,15	33	304	125	495	
2005	26	0,10 (a)	0,09 (a)	0,12 (ab)	0,15 (a)	0,10	0,05	0,19	31	370	273	517	
2008	30	0,07 (c)	0,06 (b)	0,09 (c)	0,12 (ab)	0,09	0,05	0,21	46	410	281	515	
2011	30	0,08 (bc)	0,07 (b)	0,10 (bc)	s.o.	0,08	0,05	0,13	30	343	122	475	
2014	34	0,07 (c)	0,06 (b)	0,09 (c)	0,12 (ab)	0,09	0,05	0,25	46	359	125	531	
2017	30	0,07 (c)	0,07 (b)	0,08 (c)	0,10 (b)	0,08	0,04	0,15	33	347	144	580	


¹ Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

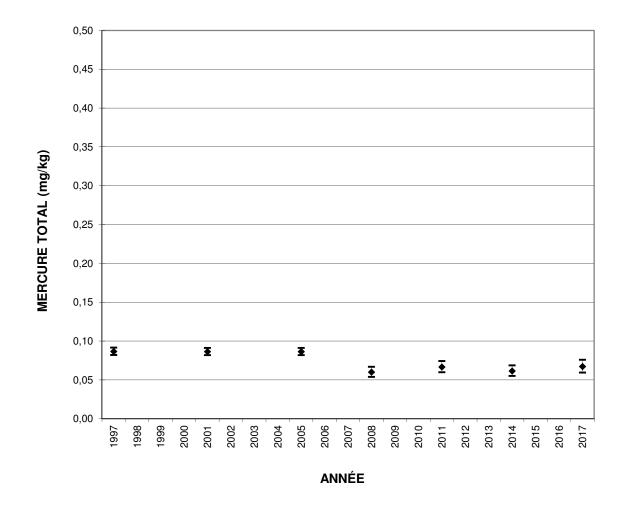
² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.


³ Teneur en mercure à la longueur standardisée.

⁴ Teneur en mercure à la longueur de consommation.

s. o. : sans objet.

ANNEXE 3.1.1 Évolution temporelle de la relation longueur-mercure chez le grand corégone du lac Gaillarbois (SM 281).

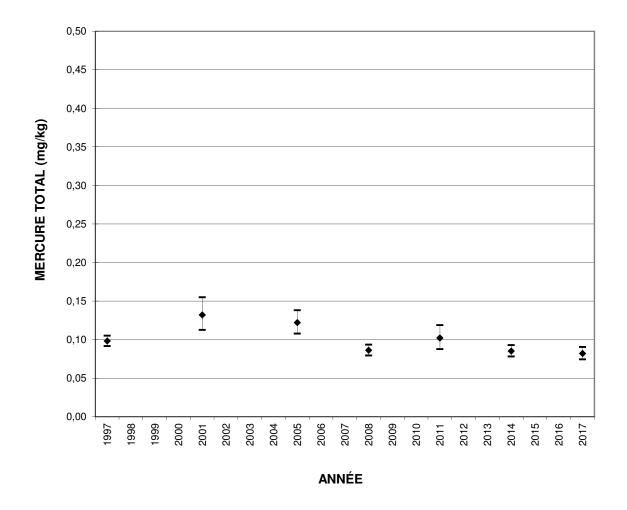


Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	1997 ab	2001 a	2005 a	2008 c	2011 bc	2014 c	2017 c
Teneur estimée	0,09	0,10	0,10	0,07	0,08	0,07	0,07
Limite inf.	0,087	0,096	0,095	0,061	0,072	0,062	0,065
Limite sup.	0,098	0,112	0,110	0,074	0,087	0,076	0,082
N	29	29	26	30	30	34	30

Annexe 3.1.1a (suite)

Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (400 mm) chez le grand corégone du lac Gaillarbois.

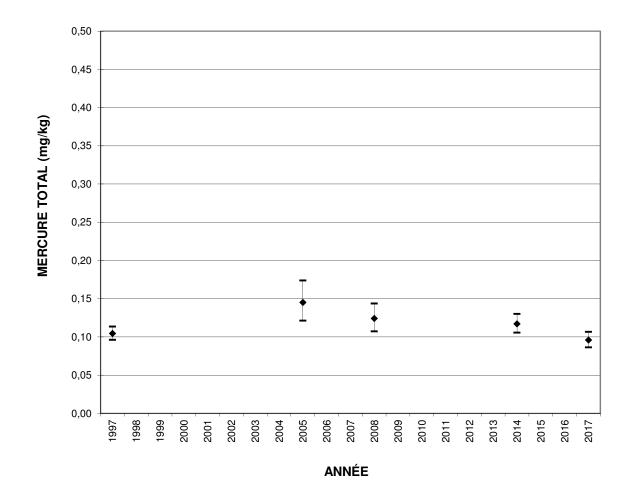


Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	1997 a	2001 a	2005 a	2008 b	2011 b	2014 b	2017 b
Teneur estimée	0,09	0,09	0,09	0,06	0,07	0,06	0,07
Limite inf.	0,082	0,082	0,082	0,054	0,060	0,055	0,059
Limite sup.	0,091	0,091	0,091	0,067	0,074	0,069	0,076
N	29	29	26	30	30	34	30

Annexe 3.1.1b (suite)

Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (350 mm) chez le grand corégone du lac Gaillarbois.



Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	1997 c	2001 ab	2005 ab	2008 c	2011 bc	2014 c	2017 c
Teneur estimée	0,10	0,13	0,12	0,09	0,10	0,09	0,08
Limite inf.	0,092	0,113	0,108	0,0794	0,088	0,078	0,074
Limite sup.	0,105	0,155	0,138	0,094	0,119	0,093	0,090
N	29	29	26	30	30	34	30

Annexe 3.1.1c (suite)

Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (450 mm) chez le grand corégone du lac Gaillarbois.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	1997 b	2001	2005 a	2008 ab	2011	2014 ab	2017 b
Teneur estimée	0,10	S.O.	0,15	0,12	S.O.	0,12	0,10
Limite inf.	0,096	S.O.	0,121	0,107	S.O.	0,106	0,086
Limite sup.	0,114	S.O.	0,174	0,144	S.O.	0,130	0,107
N	29	29	26	30	30	34	30

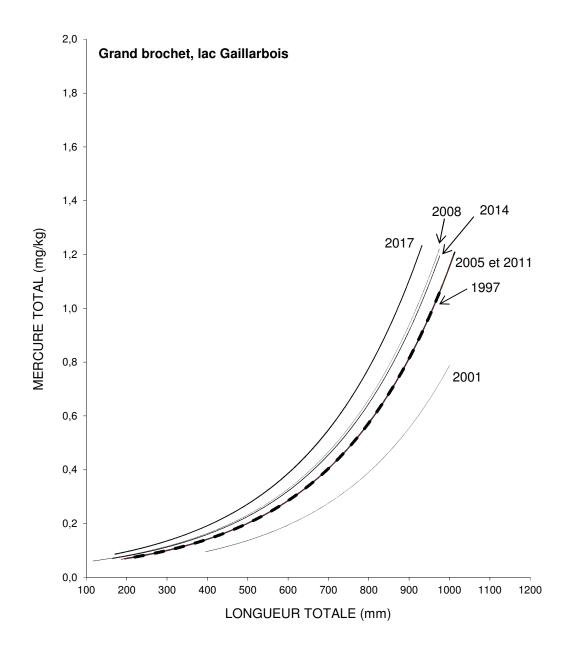
Annexe 3.1.1d (suite)

Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (500 mm) chez le grand corégone du lac Gaillarbois.

ANNEXE 3.1.2. Évolution temporelle des teneurs en mercure du grand brochet dans les milieux naturels de la région du complexe Sainte-Marguerite

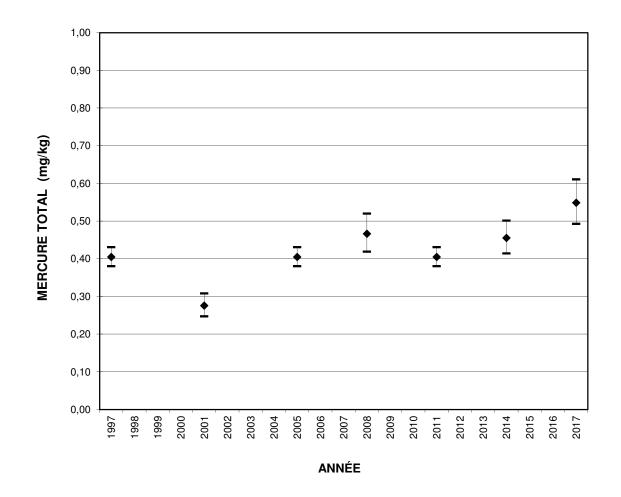
STATISTIQUES DESCRIPTIVES ET TEST DE COMPARAISONS MULTIPLES

	Nombre		Mercure total (mg/kg)							Longueur totale (mm)		
Milieu	total ¹	ST ^{2,3} (700 mm)	CO ^{2,4} (550 mm)	CO ^{2,4} (1 000 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.	
Grand brochet		-									_	
Lac Gaillarbois												
1997	29	0,40 (b)	0,24 (b)	S.O.	0,36	0,07	1,13	25	558	220	985	
2001	30	0,28 (c)	0,16 (c)	0,97 (a)	0,37	0,10	1,00	33	731	395	1 000	
2005	32	0,40 (b)	0,24 (b)	1,04 (a)	0,54	0,05	1,43	31	723	195	1 113	
2008	31	0,47 (ab)	0,28 (ab)	s.o.	0,51	0,05	1,33	50	684	116	975	
2011	32	0,40 (b)	0,24 (b)	1,10 (a)	0,51	0,05	1,61	67	695	186	1010	
2014	40	0,46 (ab)	0,27 (ab)	s.o.	0,51	0,05	1,10	63	657	164	976	
2017	32	0,55 (a)	0,32 (a)	S.O.	0,55	0,07	1,60	67	637	170	932	


Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

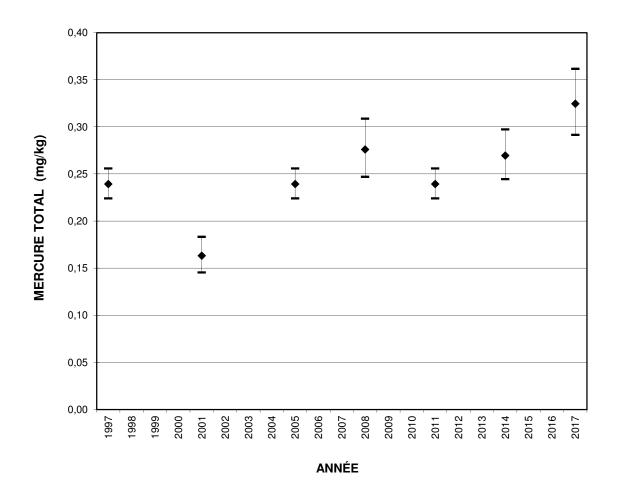
² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.

Teneur en mercure à la longueur standardisée.


⁴ Teneur en mercure à la longueur de consommation.

s. o. : sans objet.

Année	1997	2001	2005	2008	2011	2014	2017
N	29	30	32	31	32	40	32
Position	b	c	b	a	b	a	a
Forme	a	a	a	a	a	a	a


Annexe 3.1.2. Évolution temporelle de la relation longueur-mercure chez le grand brochet du lac Gaillarbois.

Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	1997	2001	2005	2008	2011	2014	2017
	b	c	b	ab	b	ab	a
Teneur estimée	0,40	0,28	0,40	0,47	0,40	0,46	0,55
Limite inf.	0,380	0,247	0,380	0,419	0,380	0,414	0,493
Limite sup.	0,431	0,308	0,431	0,520	0,431	0,501	0,611
N	29	30	32	31	32	40	32

Annexe 3.1.2a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (700 mm) chez le grand brochet du lac Gaillarbois.

Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

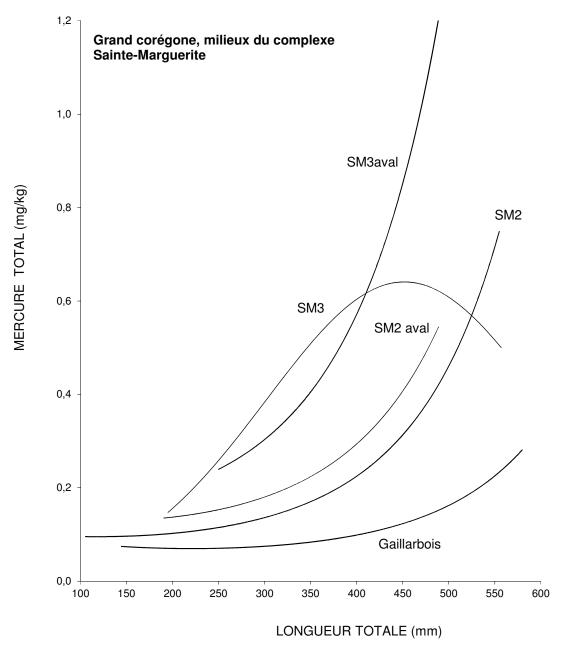
Année	1997	2001	2005	2008	2011	2014	2017
	b	c	b	ab	b	ab	a
Teneur estimée	0,24	0,16	0,24	0,28	0,24	0,27	0,32
Limite inf.	0,224	0,145	0,224	0,247	0,224	0,244	0,291
Limite sup.	0,256	0,183	0,256	0,309	0,256	0,297	0,362
N	29	30	32	31	32	40	32

Annexe 3.1.2b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (550 mm) chez le grand brochet du lac Gaillarbois.

ANNEXE 3.2.1. Variabilité spatiale des teneurs en mercure du grand corégone dans les différents milieux du complexe Sainte-Marguerite en 2017.

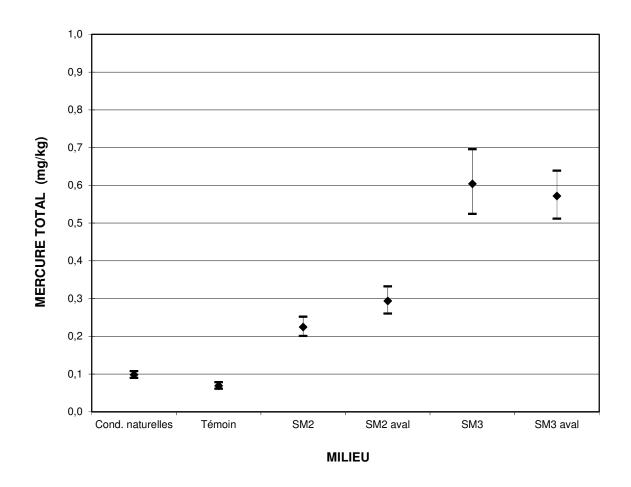
STATISTIQUES DESCRIPTIVES ET TEST DE COMPARAISONS MULTIPLES

Milieu	Nombre total ¹		Mercure total (mg/kg)								Longueur totale (mm)		
		ST ^{2,3} (400 mm)	CO ^{2,4} (350 mm)	CO ^{2,4} (450 mm)	CO ^{2,4} (500 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.	
Grand													
corégone													
Lac Gaillarbois	30	0,07 (e)	0,06 (e).	0,08 (c)	0,10 (d)	0,08	0,04	0,15	33	347	144	580	
SM 2	30	0,22 (c)	0,17 (c)	0,31 (b)	0,46 (b)	0,29	0,08	0,95	76	378	105	555	
SM2 aval	29	0,29 (b)	0,22 (b)	0,41 (a)	S.O.	0,31	0,13	1,00	74	347	190	489	
SM 3	30	0,60 (a)	0,51 (a)	0,64 (a)	0,61 (b).	0,48	0,17	0,80	39	359	195	557	
SM3 aval	30	0,57 (a)	0,41 (a)	0,85 (a)	1,34 (a)	0,70	0,14	2,60	83	376	250	533	


¹ Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.

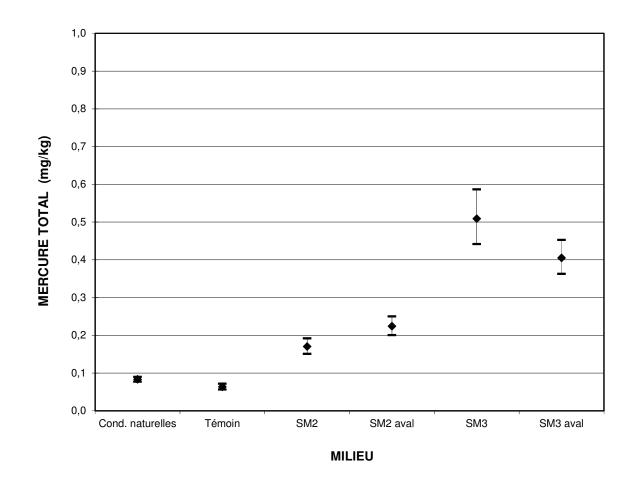
³ Teneur en mercure à la longueur standardisée.


⁴ Teneur en mercure à la longueur de consommation.

s. o. : sans objet.

Milieu Lac Gaillarbois SM2 SM2 aval SM3 SM3 aval Ν 30 30 30 30 30 Position b С b b а Forme b b b С а

Annexe 3.2.1. Variabilité spatiale de la relation longueur-mercure chez le grand corégone dans les milieux de la région du complexe Sainte-Marguerite en 2017.

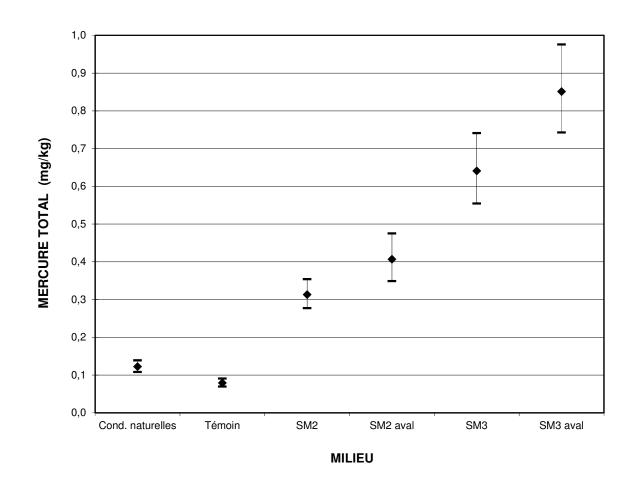


Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Milieu	Cond. nat. d	Témoin e	SM2 c	SM2 aval b	SM3 a	SM3 aval a
Teneur estimée	0,10	0,07	0,22	0,29	0,60	0,57
Limite inf.	0,090	0,061	0,201	0,260	0,524	0,512
Limite sup.	0,108	0,078	0,252	0,332	0,695	0,639
N	70	30	30	29	30	30

Annexe 3.2.1a (suite)

Variabilité spatiale de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (400 mm) chez le grand corégone de la région du complexe Sainte-Marguerite en 2017.

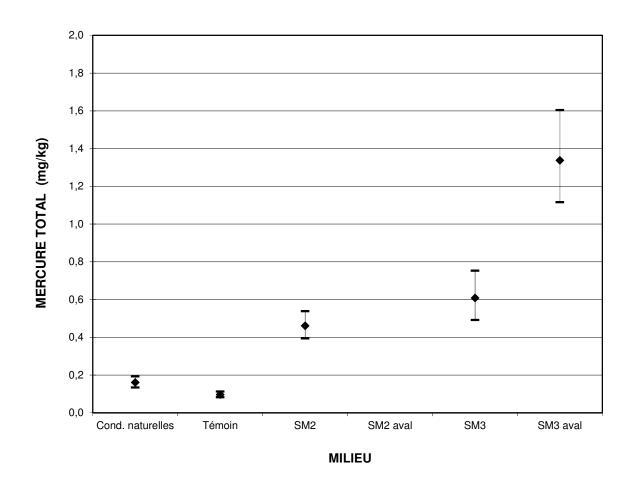


Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Milieu	Cond. nat. d	Témoin e	SM2 c	SM2 aval b	SM3 a	SM3 aval a
Teneur estimée	0,08	0,06	0,17	0,22	0,51	0,41
Limite inf.	0,077	0,056	0,151	0,201	0,442	0,363
Limite sup.	0,090	0,072	0,192	0,250	0,586	0,453
N	70	30	30	29	30	30

Annexe 3.2.1b (suite)

Variabilité spatiale de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (350 mm) chez le grand corégone de la région du complexe Sainte-Marguerite en 2017.



Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Milieu	Cond. nat.	Témoin c	SM2 b	SM2 aval a	SM3 a	SM3 aval a
Teneur estimée	0,12	0,08	0,31	0,41	0,64	0,85
Limite inf.	0,108	0,069	0,277	0,349	0,554	0,743
Limite sup.	0,139	0,091	0,354	0,475	0,741	0,976
N	70	30	30	29	30	30

Annexe 3.2.1c (suite)

Variabilité spatiale de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (450 mm) chez le grand corégone de la région du complexe Sainte-Marguerite en 2017.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

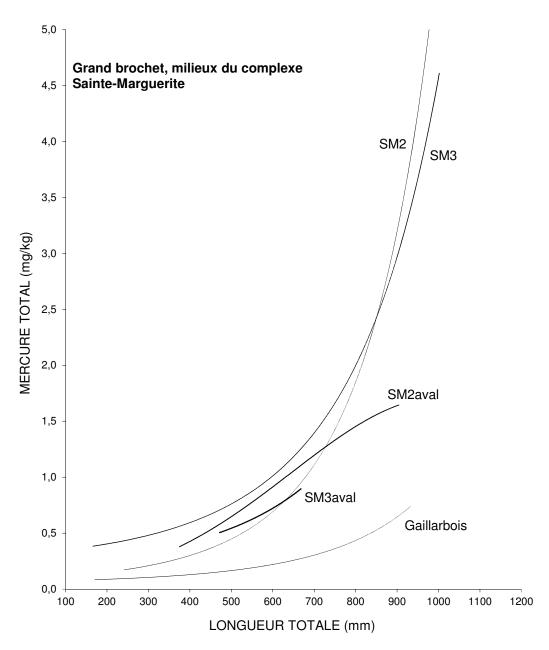
Milieu	Cond. nat.	Témoin d	SM2 b	SM2 aval	SM3 b	SM3 aval a
Teneur estimée	0,16	0,10	0,46	S.O.	0,61	1,34
Limite inf.	0,134	0,082	0,394	S.O.	0,491	1,116
Limite sup.	0,194	0,113	0,538	S.O.	0,753	1,604
N	70	30	30	29	30	30

Annexe 3.2.1d (suite)

Variabilité spatiale de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (500 mm) chez le grand corégone de la région du complexe Sainte-Marguerite en 2017.

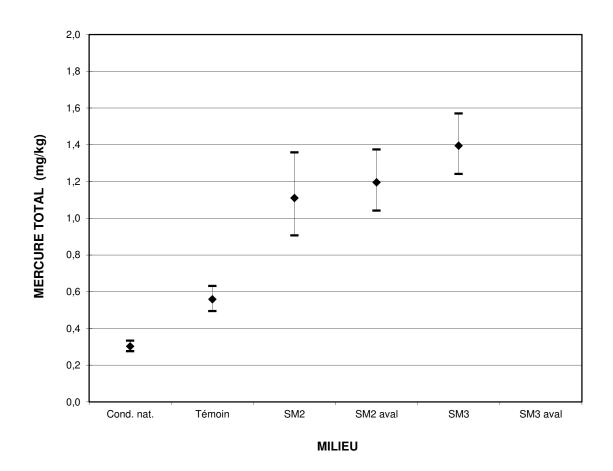
ANNEXE 3.2.2. Variabilité spatiale des teneurs en mercure du grand brochet dans les différents milieux du complexe Sainte-Marguerite en 2017

			Mercure total (mg/kg)							Longueur totale (mm)		
Milieu	Nombre total ¹	ST ^{2,3} (700 mm)	CO ^{2,4} (550 mm)	CO ⁴ (1 000 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.	
Grand brochet												
Lac Gaillarbois	32	0,56 (b)	0,30 (d)	S.O.	0,55	0,07	1,60	67	637	170	932	
SM 2	31	1,11 (a)	0,55 (c)	5,72 (a)	0,63	0,14	5,20	142	497	241	1009	
SM2 aval	30	1,20 (a)	0,78 (ab)	S.O.	0,94	0,31	2,10	81	591	375	904	
SM 3	32	1,40 (a)	0,87 (a)	4,57 (a)	1,50	0,28	5,90	81	630	166	1002	
SM3 aval	30	S.O.	0,62 (bc)	S.O.	0,72	0,41	1,60	38	576	472	668	


Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.

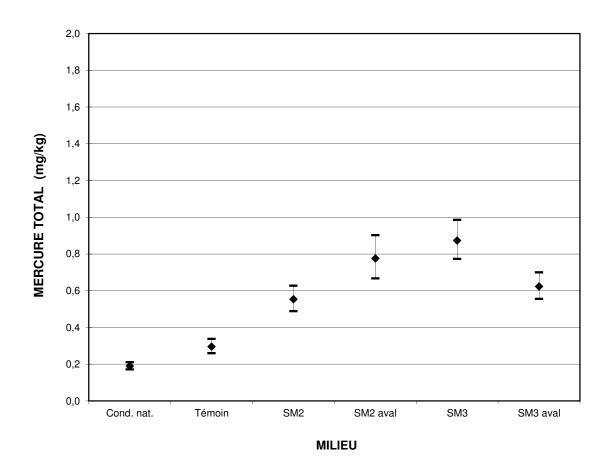
³ Teneur en mercure à la longueur standardisée.


⁴ Teneur en mercure à la longueur de consommation.

s. o. : sans objet.

Milieu	Gaillarbois	SM2	SM2 aval	SM3	SM3 aval
N	32	31	30	32	30
Position	c	b	ab	a	b
Forme	c	a	d	b	b

Annexe 3.2.2. Variabilité spatiale de la relation longueur-mercure chez le grand brochet dans les milieux de la région du complexe Sainte-Marguerite.

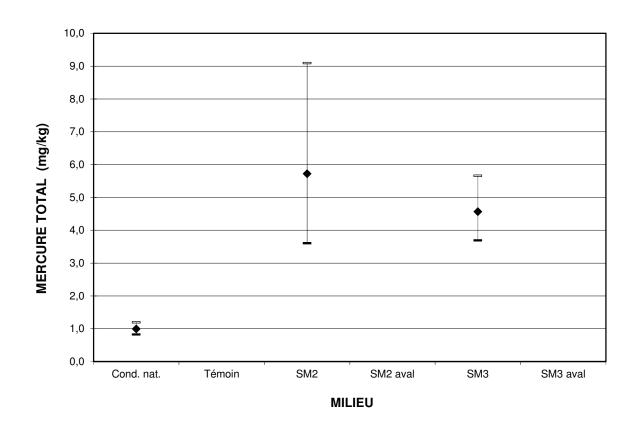


Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Milieu	Cond. nat.	Témoin b	SM2 a	SM2 aval a	SM3 a	SM3 aval
Teneur estimée	0,30	0,56	1,11	1,20	1,40	S.O.
Limite inf.	0,275	0,494	0,906	1,041	1,240	S.O.
Limite sup.	0,334	0,631	1,359	1,374	1,570	S.O.
N	59	32	31	30	32	30

Annexe 3.2.2a (suite)

Variabilité spatiale de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (700 mm) chez le grand brochet de la région du complexe Sainte-Marguerite en 2017.



Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Milieu	Cond. nat. e	Témoin d	SM2 c	SM2 aval ab	SM3 a	SM3 aval
Teneur estimée	0,19	0,30	0,55	0,78	0,87	0,62
Limite inf.	0,171	0,259	0,488	0,667	0,773	0,556
Limite sup.	0,211	0,338	0,627	0,902	0,986	0,700
N	59	32	31	30	32	30

Annexe 3.2.2b (suite)

Variabilité spatiale de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (550 mm) chez le grand brochet de la région du complexe Sainte-Marguerite en 2017.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Milieu	Cond. nat. b	Témoin	SM2 a	SM2 aval	SM3 a	SM3 aval
Teneur estimée	0,99	S.O.	5,72	S.O.	4,57	S.O.
Limite inf.	0,824	S.O.	3,602	S.O.	3,689	S.O.
Limite sup.	1,197	S.O.	9,090	S.O.	5,661	S.O.
N	59	32	31	30	32	30

Annexe 3.2.2c (suite)

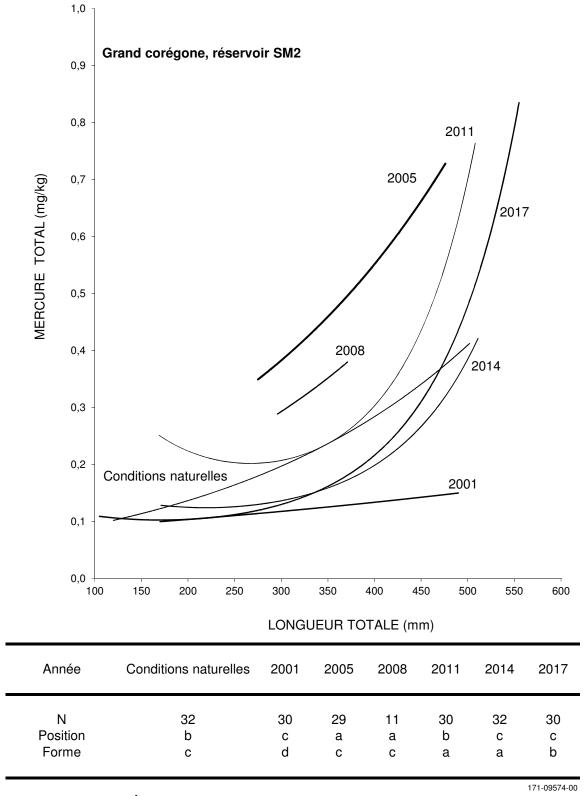
Variabilité spatiale de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (1000 mm) chez le grand brochet de la région du complexe Sainte-Marguerite en 2017.

ANNEXE 3.3.1. Évolution temporelle des teneurs en mercure du grand corégone dans les réservoirs du complexe Sainte-Marguerite

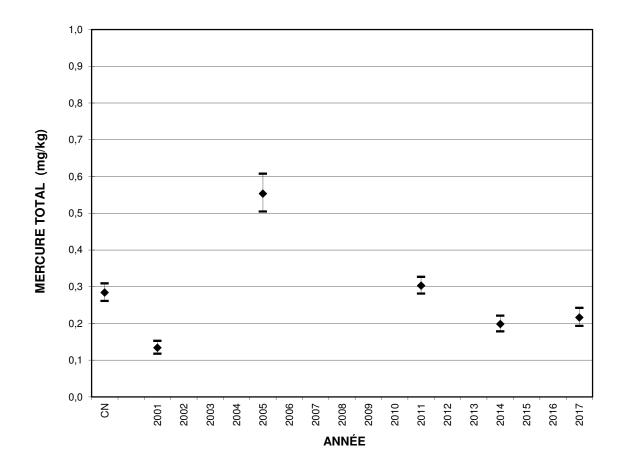
Milieu	Nbre total ¹			_	cure total mg/kg)					Lor	ngueur to (mm)	otale
		ST ^{2,4} (400 mm)	ST ^{2,3} (350 mm)	CO ^{2,4} (450 mm)	CO ^{2,4} (500 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.
Grand corégone												
Réservoir SM 2												
Avant mise en eau ⁵	32	0,28 (b)	0,24 (c)	0,34 (c)	s.o.	0,22	0,10	0,40	38	320	146	480
2001 (3 ans)	30	0,13 (d)	0,13 (e)	0,14 (e)	s.o.	0,12	0,08	0,18	21	303	170	490
2005 (7 ans)	29	0,55 (a)	0,46 (a)	0,66 (a)	s.o.	0,57	0,22	0,94	33	392	274	475
2008 (10 ans)	11	S.O.	0,35 (b)	S.O.	s.o.	0,35	0,21	0,57	27	336	295	370
2011 (13 ans)	30	0,30 (b)	0,24 (c)	0,44 (b)	0,70 (a)	0,36	0,17	0,78	53	342	169	508
2014 (16 ans)	32	0,20 (c)	0,16 (d)	0,27 (d)	0,38 (b)	0,20	0,09	0,61	57	354	171	511
2017 (19 ans)	30	0,22(c)	0,16 (d)	0,31 (cd)	0,48 (b)	0,29	0,08	0,95	76	378	105	555
Réservoir SM 3												
Avant mise en eau ⁶	70	0,10 (d)	0,09 (d)	0,11 (d)	0,12 (b)	0,09	0,05	0,15	30	317	120	502
2001 (3 ans)	28	0,66 (ab)	0,61 (ab)	0,72 (ab)	s.o.	0,62	0,44	0,84	15	353	290	415
2005 (7 ans)	31	0,78 (a)	0,71 (a)	0,85 (a)	s.o.	0,78	0,51	1,41	26	387	288	495
2008 (10 ans)	30	0,60 (b)	0,55 (b)	0,66 (bc)	0,72 (a)	0,63	0,40	1,13	31	400	283	519
2011 (13 ans)	30	0,47 (c)	0,40 (c)	0,56 (c)	s.o.	0,40	0,20	0,74	37	335	218	462
2014 (16 ans)	32	0,46 (c)	0,36 (c)	0,58 (c)	S.O.	0,38	0,12	0,81	44	335	132	489
2017 (19 ans)	30	0,60 (b)	0,51 (b)	0,64 (bc)	0,61 (a)	0,48	0,17	0,80	39	359	195	557

¹ Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.

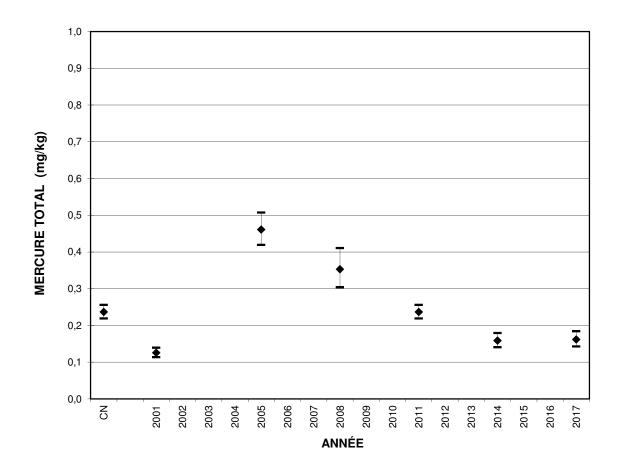

³ Teneur en mercure à la longueur standardisée.

Teneur en mercure à la longueur de consommation.


⁵ Réservoir SM 2 en 1992 (38 ans). Il est considéré être devenu équivalent au milieu naturel. Les âges entre parenthèses sont depuis la dernière modification, soit la mise en eau du réservoir SM 3.

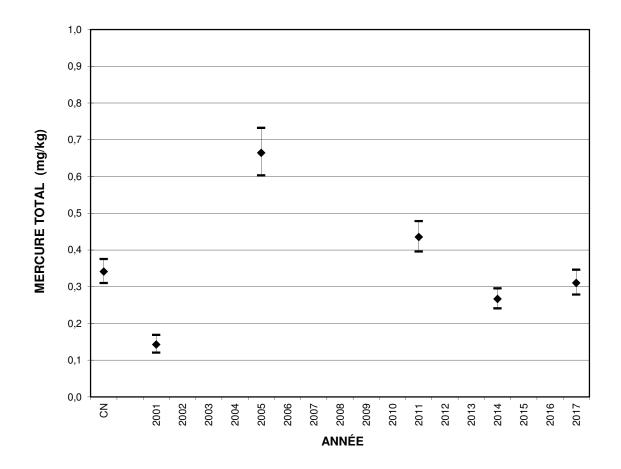
⁶ Lac Gaillarbois en 1997 (n = 29) et en 2001 (n = 30) ainsi que la rivière Sainte-Marguerite en conditions naturelles en 1996 (n = 12).

s.o. : sans objet.


Annexe 3.3.1.1 Évolution temporelle de la relation longueur-mercure chez le grand corégone du réservoir SM2.

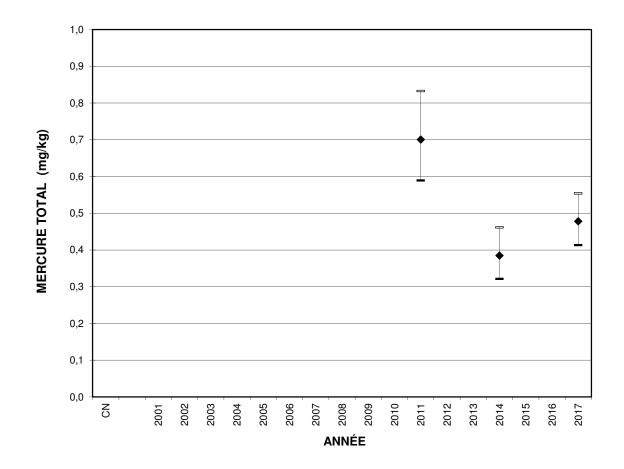
Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	Cond. naturelles b	2001 d	2005 a	2008	2011 b	2014 c	2017 c
Teneur estimée	0,28	0,13	0,55	S.O.	0,30	0,20	0,22
Limite inf.	0,261	0,117	0,504	S.O.	0,281	0,178	0,193
Limite sup.	0,309	0,153	0,607	S.O.	0,327	0,221	0,242
N	32	30	29	11	30	32	30


Annexe 3.3.1.1a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (400 mm) chez le grand corégone du réservoir SM2.

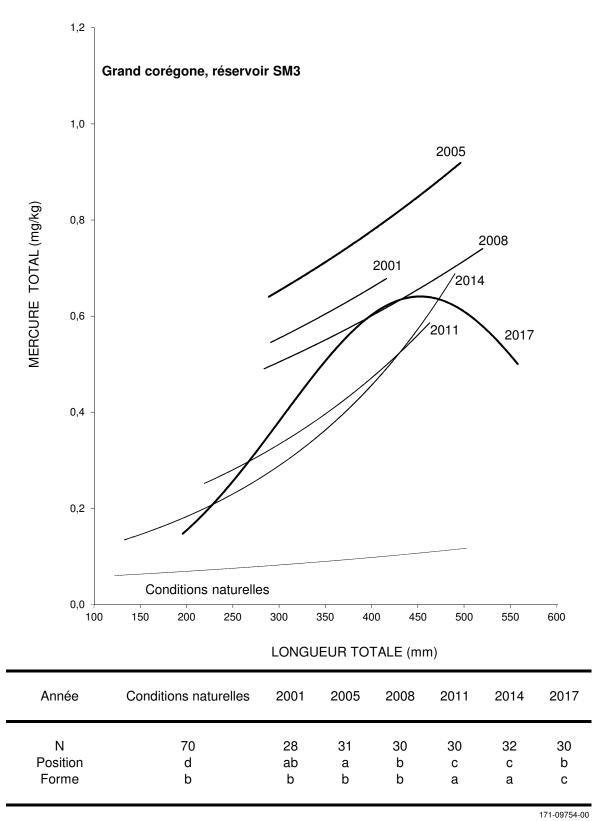
Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

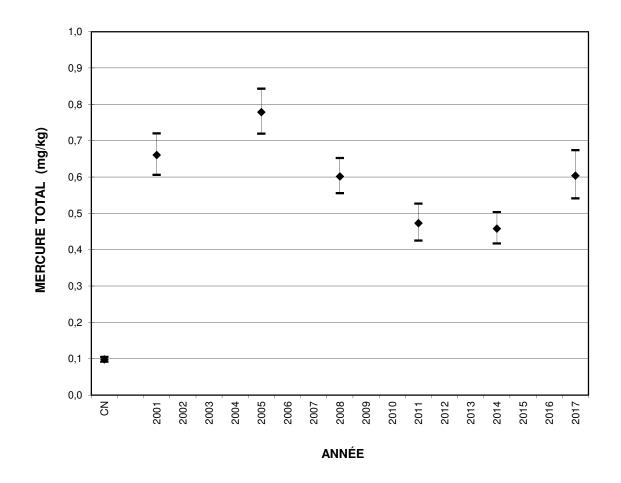
Année	Cond. naturelles	2001 e	2005 a	2008 b	2011 c	2014 d	2017 d
Teneur estimée	0,24	0,13	0,46	0,35	0,24	0,16	0,16
Limite inf.	0,219	0,113	0,419	0,304	0,219	0,141	0,143
Limite sup.	0,256	0,139	0,507	0,411	0,256	0,179	0,184
N	32	30	29	11	30	32	30


Annexe 3.3.1.1b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (350 mm) chez le grand corégone du réservoir SM2.

Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

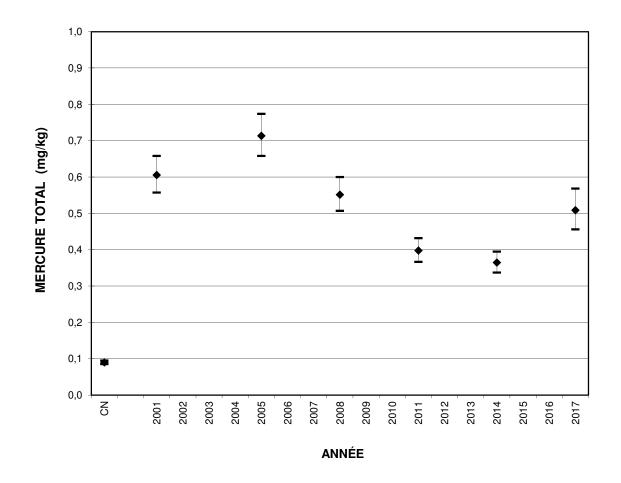
Année	Cond. naturelles	2001 e	2005 a	2008	2011 b	2014 d	2017 cd
Teneur estimée	0,34	0,14	0,66	s.o.	0,44	0,27	0,31
Limite inf.	0,310	0,121	0,603	s.o.	0,396	0,241	0,278
Limite sup.	0,375	0,169	0,732	s.o.	0,479	0,295	0,346
N	32	30	29	11	30	32	30


Annexe 3.3.1.1c (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (450 mm) chez le grand corégone du réservoir SM2.


Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

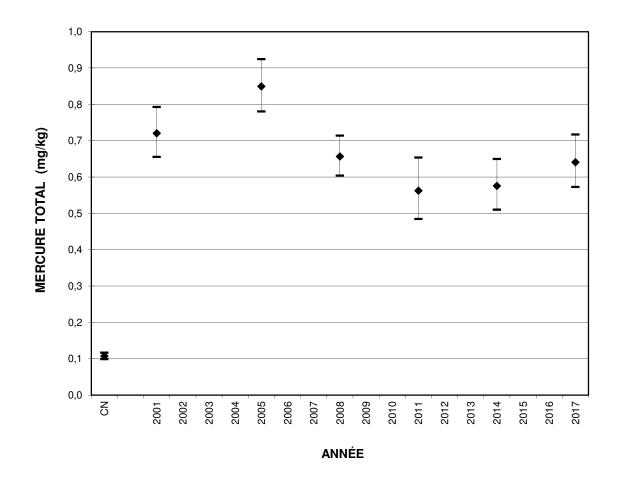
Année	Cond. naturelles	2001	2005	2008	2011 a	2014 b	2017 b
Teneur estimée	S.O.	S.O.	S.O.	S.O.	0,70	0,38	0,48
Limite inf.	S.O.	S.O.	S.O.	S.O.	0,589	0,321	0,413
Limite sup.	S.O.	s.o.	S.O.	S.O.	0,832	0,461	0,554
N	32	30	29	11	30	32	30

Annexe 3.3.1.1d (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (500 mm) chez le grand corégone du réservoir SM2.


Annexe 3.3.1.2. Évolution temporelle de la relation longueur-mercure chez le grand corégone du réservoir SM3.

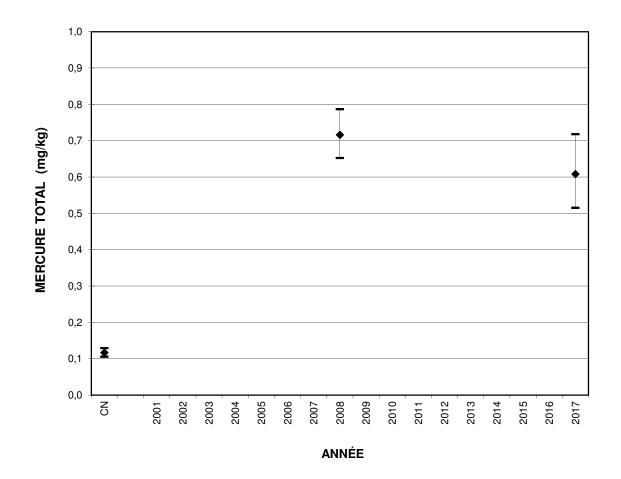
Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	Cond. naturelles	2001 ab	2005 a	2008 b	2011 c	2014 c	2017 b
Teneur estimée	0,10	0,66	0,78	0,60	0,47	0,46	0,60
Limite inf.	0,092	0,606	0,719	0,555	0,425	0,417	0,541
Limite sup.	0,105	0,720	0,843	0,652	0,527	0,503	0,674
N	70	28	31	30	30	32	30


Annexe 3.3.1.2.a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (400 mm) chez le grand corégone du réservoir SM3.

Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	Cond. naturelles	2001 ab	2005 a	2008 b	2011 c	2014 c	2017 b
Teneur estimée	0,09	0,61	0,71	0,55	0,40	0,36	0,51
Limite inf.	0,085	0,557	0,658	0,507	0,366	0,337	0,456
Limite sup.	0,095	0,658	0,774	0,600	0,432	0,395	0,568
N	70	28	31	30	30	32	30


Annexe 3.3.1.2.b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (350 mm) chez le grand corégone du réservoir SM3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	Cond. naturelles	2001 ab	2005 a	2008 bc	2011 c	2014 c	2017 bc
Teneur estimée	0,11	0,72	0,85	0,66	0,56	0,58	0,64
Limite inf.	0,099	0,655	0,781	0,604	0,484	0,510	0,573
Limite sup.	0,116	0,793	0,924	0,714	0,653	0,650	0,717
N	70	28	31	30	30	32	30

Annexe 3.3.1.2.c (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (450 mm) chez le grand corégone du réservoir SM3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	Cond. naturelles b	2001	2005	2008 a	2011	2014	2017 a
Teneur estimée	0,12	S.O.	s.o.	0,72	s.o.	s.o.	0,61
Limite inf.	0,105	S.O.	s.o.	0,652	s.o.	s.o.	0,515
Limite sup.	0,129	s.o.	s.o.	0,786	s.o.	s.o.	0,718
N	70	28	31	30	30	32	30

Annexe 3.3.1.2.d (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (500 mm) chez le grand corégone du réservoir SM3.

ANNEXE 3.3.2. Évolution temporelle des teneurs en mercure du grand brochet dans les réservoirs du complexe Sainte-Marguerite

STATISTIQUES DESCRIPTIVES ET TEST DE COMPARAISONS MULTIPLES

Milieu	Nombre total ¹		Mercure total (mg/kg)						Longueur totale (mm)		
		ST ^{2,3} (700 mm)	CO ^{2,4} (550 mm)	CO ^{2,4} (1 000 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.
Grand brochet											
Réservoir SM 2											
Avant mise en eau 6	35	0,69 (d)	0,43 (e)	S.O.	0,38	0,15	1,12	52	472	290	980
2001 (3 ans)	34	0,66 (d)	0,49 (de)	1,19 (b)	0,49	0,21	1,83	55	506	310	1 070
2005 (7 ans)	31	2,02 (a)	1,49 (a)	S.O.	1,44	0,28	2,34	38	533	164	925
2008 (10 ans)	26	S.O.	1,27 (ab)	S.O.	0,85	0,45	1,65	35	403	172	576
2011 (13 ans)	31	1,55 (b)	1,07 (b)	S.O.	1,11	0,20	3,26	59	535	162	955
2014 (16 ans)	34	0,97 (c)	0,70 (c)	S.O.	0,68	0,13	1,98	67	501	188	832
2017 (19 ans)	31	1,14 (c)	0,58 (cd)	4,37 (a)	0,63	0,14	5,20	142	497	241	1009
Réservoir SM 3											
Avant mise en eau ⁷	59	0,30 (e)	0,19 (e)	0,95 (b)	0,36	0,07	1,13	76	646	220	1 000
2001 (3 ans)	31	0,71 (d)	0,61 (c)	S.O.	0,65	0,47	0,91	13	597	335	703
2005 (7 ans)	29	1,52 (bc)	0,96 (bc)	S.O.	1,42	0,28	2,39	30	653	166	827
2008 (10 ans)	30	1,90 (a)	1,20 (a)	S.O.	1,97	0,57	3,80	46	666	310	879
2011 (13 ans)	30	1,83 (ab)	0,96 (abc)	S.O.	2,61	0,34	6,64	54	722	223	996
2014 (16 ans)	27	1,31 (c)	0,73 (d)	S.O.	1,42	0,22	6,53	96	604	253	950
2017 (19 ans)	32	1,40 (c)	0,88 (cd)	4,37 (a)	1,50	0,28	5,90	81	630	166	1002

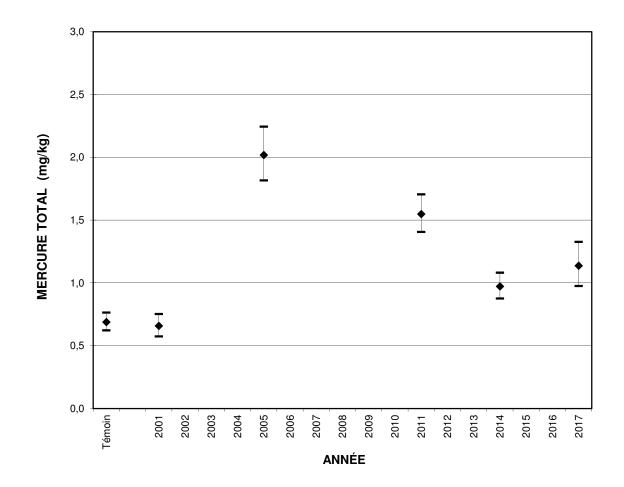
¹ Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.

³ Teneur en mercure à la longueur standardisée.

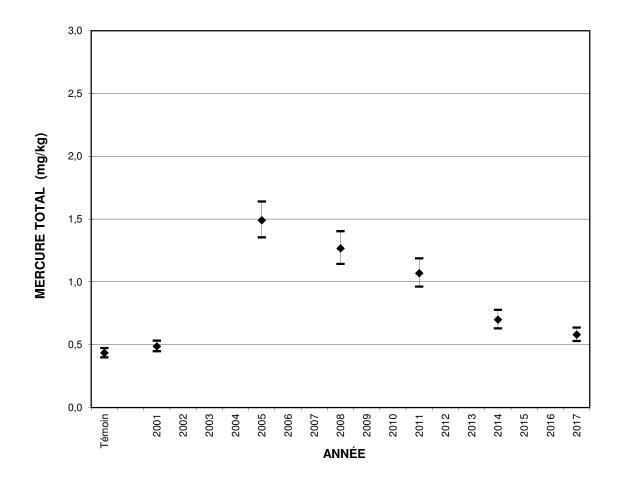
⁴ Teneur en mercure à la longueur de consommation.

⁵ Réservoir SM 2 en 1992 (Š8 ans) et 1997 (43 ans). Il est considéré être devenu équivalent au milieu naturel. Les âges entre parenthèses sont depuis la dernière modification, soit la mise en eau du réservoir SM 3.


⁶ Lac Gaillarbois en 1997 (n = 29) et en 2001 (n = 30).

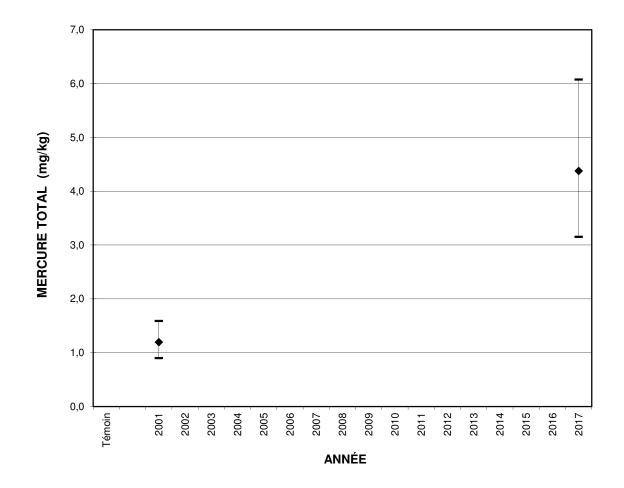
s. o. : sans objet.

Année	Conditions naturelles	2001	2005	2008	2011	2014	2017
N	35	34	31	26	31	34	31
Position	e	d	a	ab	b	c	d
Forme	b	c	d	b	d	d	a


Annexe 3.3.2.1. Évolution temporelle de la relation longueur-mercure chez le grand brochet du réservoir SM2.

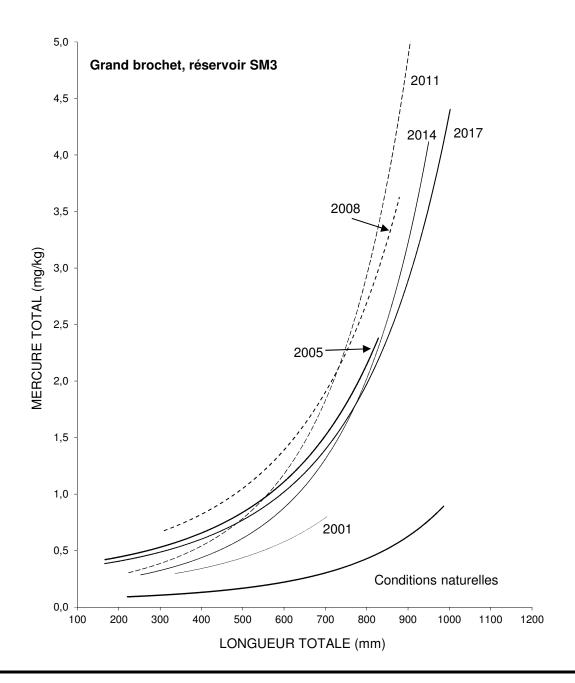
Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	Témoin d	2001 d	2005 a	2008	2011 b	2014 c	2017 c
Teneur estimée	0,69	0,66	2,02	S.O.	1,55	0,97	1,14
Limite inf.	0,621	0,574	1,815	S.O.	1,406	0,875	0,975
Limite sup.	0,763	0,752	2,244	S.O.	1,705	1,081	1,326
N	35	34	31	26	31	34	31

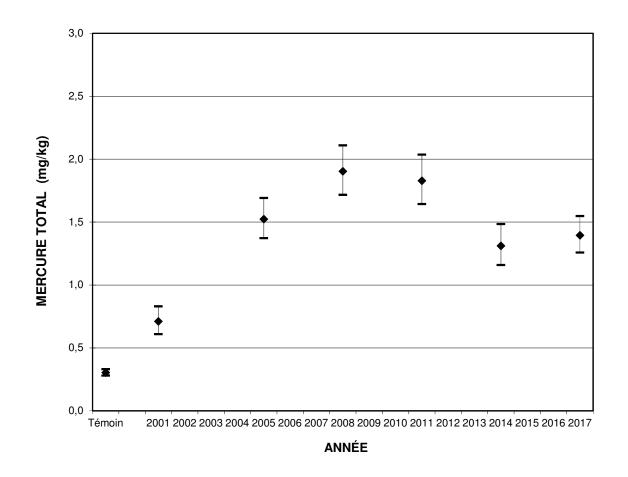

Annexe 3.3.2.1a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (700 mm) chez le grand brochet du réservoir SM2.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	Témoin e	2001 de	2005 a	2008 ab	2011 b	2014 c	2017 cd
Teneur estimée	0,43	0,49	1,49	1,27	1,07	0,70	0,58
Limite inf.	0,399	0,447	1,355	1,143	0,962	0,630	0,528
Limite sup.	0,472	0,531	1,640	1,403	1,187	0,777	0,636
N	35	34	31	26	31	34	31

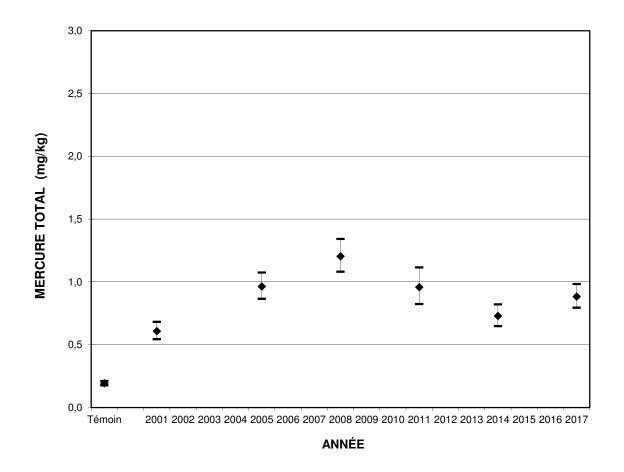

Annexe 3.3.2.1b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (550 mm) chez le grand brochet du réservoir SM2.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%


Année	Témoin	2001 b	2005	2008	2011	2014	2017 a
Teneur estimée	S.O.	1,19	S.O.	S.O.	S.O.	S.O.	4,37
Limite inf.	S.O.	0,899	S.O.	S.O.	S.O.	s.o.	3,152
Limite sup.	S.O.	1,588	S.O.	S.O.	S.O.	s.o.	6,072
N	35	34	31	26	31	34	31

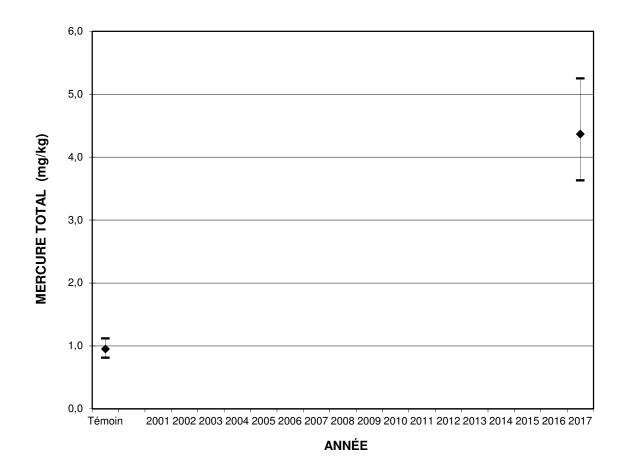
Annexe 3.3.2.1c (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (1000 mm) chez le grand brochet du réservoir SM2.

Année	Conditions naturelles	2001	2005	2008	2011	2014	2017
N	59	31	29	30	30	27	32
Position	e	d	abc	a	ab	c	bc
Forme	b	c	b	b	a	a	b


Annexe 3.3.2.2. Évolution temporelle de la relation longueur-mercure chez le grand brochet du réservoir SM3.

Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	Témoin e	2001 d	2005 bc	2008 a	2011 ab	2014 c	2017 c
Teneur estimée	0,30	0,71	1,52	1,90	1,83	1,31	1,40
Limite inf.	0,280	0,609	1,372	1,717	1,642	1,158	1,258
Limite sup.	0,331	0,830	1,691	2,110	2,036	1,484	1,548
N	59	31	29	30	30	27	32


Annexe 3.3.2.2a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (700 mm) chez le grand brochet du réservoir SM 3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	Témoin e	2001 c	2005 bc	2008 a	2011 abc	2014 d	2017 cd
Teneur estimée	0,19	0,61	0,96	1,20	0,96	0,73	0,88
Limite inf.	0,176	0,543	0,865	1,081	0,823	0,648	0,793
Limite sup.	0,211	0,682	1,074	1,342	1,115	0,821	0,983
N	59	31	29	30	30	27	32

Annexe 3.3.2.2b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (550 mm) chez le grand brochet du réservoir SM 3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

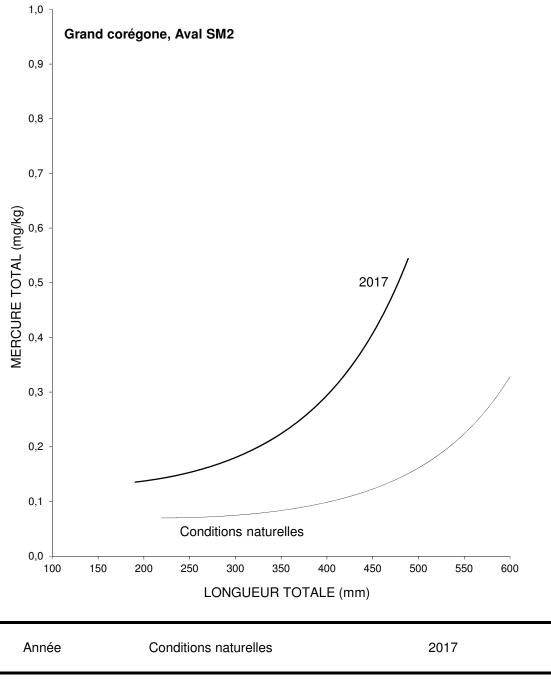
Année	Témoin b	2001	2005	2008	2011	2014	2017 a
Teneur estimée	0,95	S.O.	S.O.	S.O.	S.O.	S.O.	4,37
Limite inf.	0,810	S.O.	S.O.	S.O.	S.O.	s.o.	3,631
Limite sup.	1,118	S.O.	S.O.	S.O.	S.O.	s.o.	5,251
N	59	31	29	30	30	27	32

Annexe 3.3.2.1c (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (1000 mm) chez le grand brochet du réservoir SM3.

ANNEXE 3.4.1. Évolution temporelle des teneurs en mercure du grand corégone en aval des centrales du complexe Ste-Marguerite.

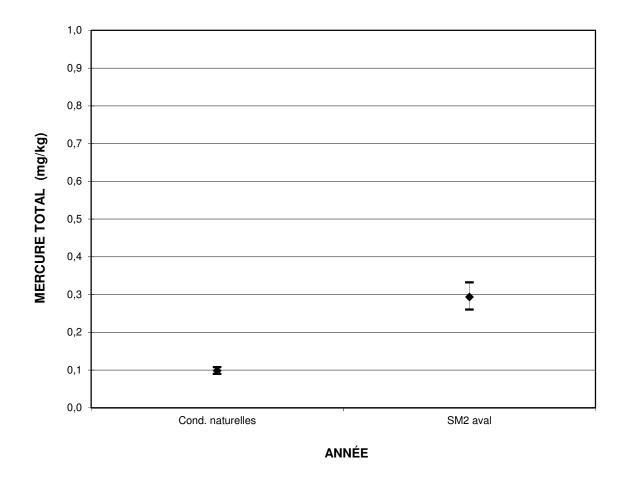
STATISTIQUES DESCRIPTIVES ET TEST DE COMPARAISONS MULTIPLES

Milieu	Nbre total ¹		Mercure total (mg/kg)							Longueur totale (mm)		
		ST ^{2,3} (400 mm)	ST ^{2,4} (350 mm)	CO ^{2,4} (450 mm)	CO ^{2,4} (500 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.
Grand corégone												
Aval SM 2												
Conditions naturelles	70	0,10 (b)	0,08 (b)	0,06 (b)	0,16 (b)	0,09	0,05	0,15	30	317	120	502
2017 (19 ans)	29	0,29 (a)	0,22 (a)	0,41 (a)	S.O.	0,31	0,13	1,00	74	347	190	489
Aval SM 3												
Conditions naturelles	70	0,10 (b)	0,08 (d)	0,06 (b)	0,16 (b)	0,09	0,05	0,15	30	317	120	502
2017 (19 ans)	30	0,57 (a)	0,41 (b)	0,85 (a)	1,34 (a)	0,70	0,14	2,60	83	376	250	533


¹ Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

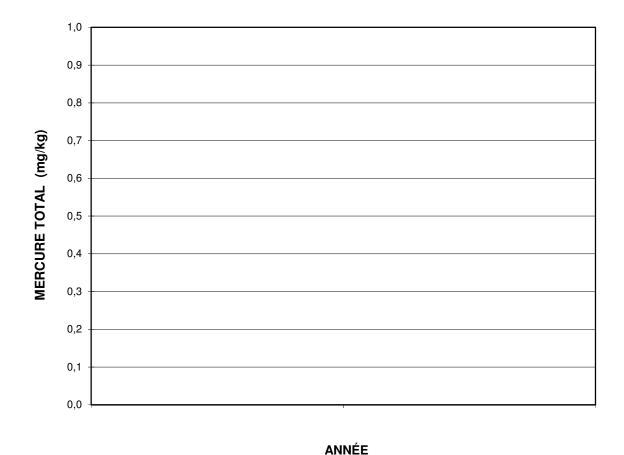
² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.

³ Teneur en mercure à la longueur standardisée.


⁴ Teneur en mercure à la longueur de consommation.

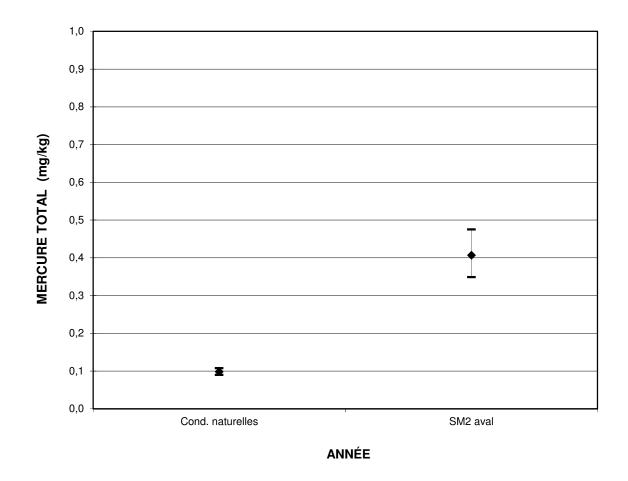
s. o. : sans objet.

Année	Conditions naturelles	2017
N	70	29
Position	b	a
Forme	b	a


ANNEXE 3.4.1.1 Évolution temporelle de la relation longueur-mercure chez le grand corégone en aval du réservoir Ste-Marguerite 2.

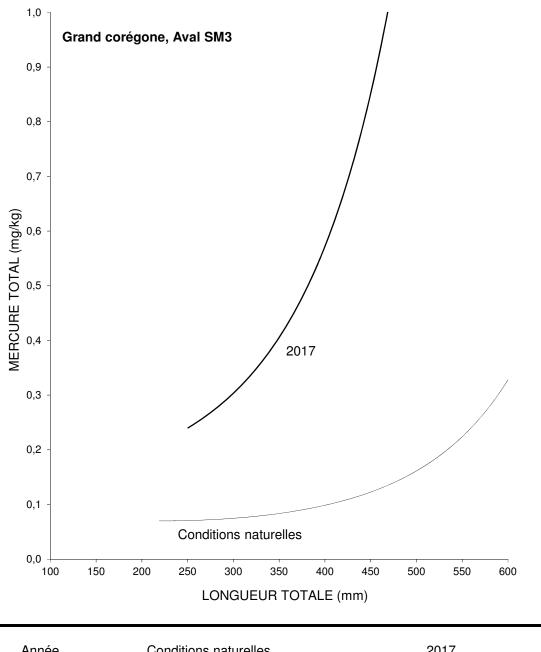
Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	Conditions naturelles b	2017 a
Teneur estimée	0,10	0,29
Limite inf.	0,090	0,260
Limite sup.	0,108	0,332
N	70	29

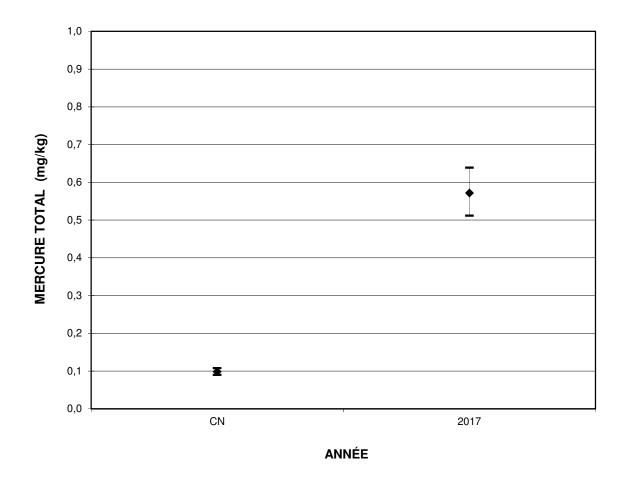

Annexe 3.4.1.1a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (400 mm) chez le grand corégone en aval du réservoir Ste-Marguerite 2.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	Conditions naturelles b	2017 a
Teneur estimée	0,08	0,22
Limite inf.	0,077	0,201
Limite sup.	0,090	0,250
N	70	29

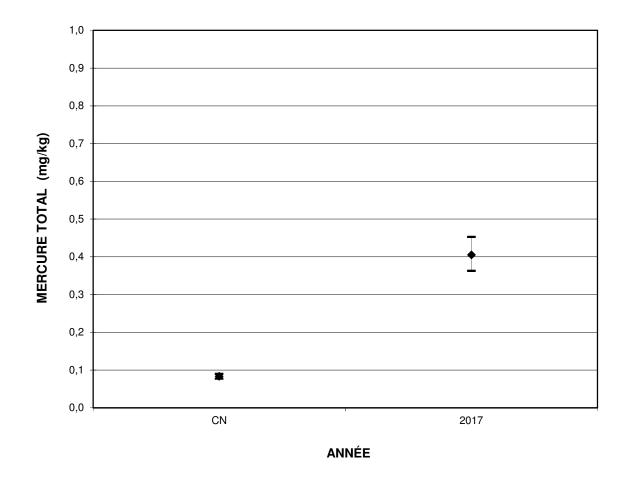

Annexe 3.4.1.1b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (350 mm) chez le grand corégone en aval du réservoir Ste-Marguerite 2.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%


Année	Conditions naturelles b	2017 a
Teneur estimée Limite inf.	0,06 0,057	0,41 0,349
Limite sup.	0,071 70	0,475 29

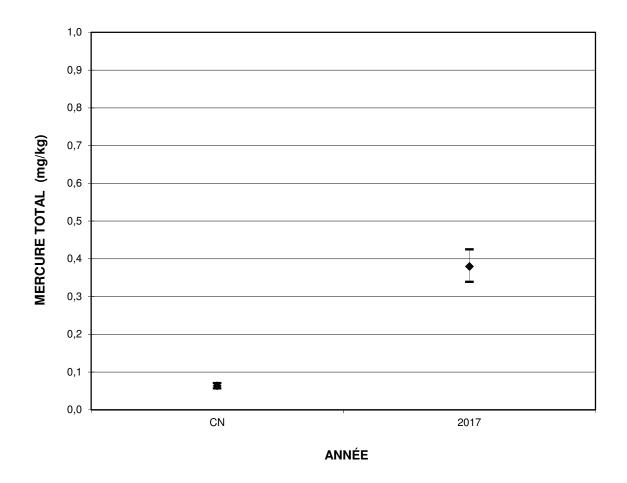
Annexe 3.4.1.1c (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (450 mm) chez le grand corégone en aval du réservoir Ste-Marguerite 2.

Année	Conditions naturelles	2017
N	70	30
Position	b	a
Forme	b	a


ANNEXE 3.4.1.2 Évolution temporelle de la relation longueur-mercure chez le grand corégone en aval du réservoir Ste-Marguerite 3.

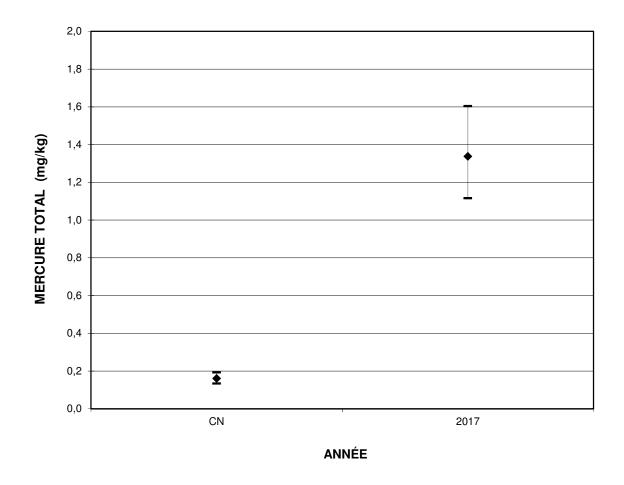
Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Année	Conditions naturelles b	2017 a
Teneur estimée	0,10	0,57
Limite inf.	0,090	0,512
Limite sup.	0,108	0,639
N	70	30


Annexe 3.4.1.2a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (400 mm) chez le grand corégone en aval du réservoir Ste-Marguerite 3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	Conditions naturelles b	2017 a
Teneur estimée	0,08	0,41
Limite inf.	0,077	0,363
Limite sup.	0,090	0,453
N	70	30


Annexe 3.4.1.2b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (350 mm) chez le grand corégone en aval du réservoir Ste-Marguerite 3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Année	Conditions naturelles b	2017 a
Teneur estimée Limite inf.	0,06 0,057	0,85 0,743
Limite sup.	0,071	0,976
N	70	30

Annexe 3.4.1.2c (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (450 mm) chez le grand corégone en aval du réservoir Ste-Marguerite 3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

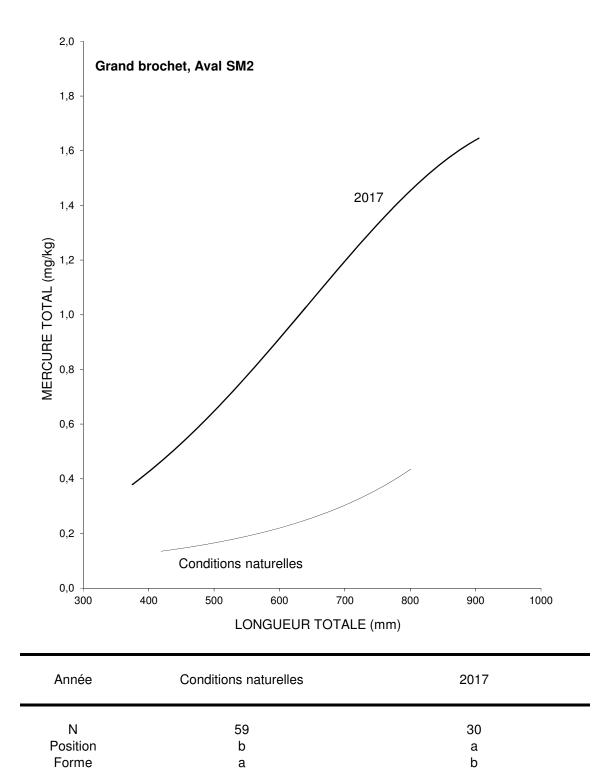
Année	Conditions naturelles b	2017 a
Teneur estimée	0,16	1,34
Limite inf.	0,134	1,116
Limite sup.	0,194	1,604
N	70	30

Annexe 3.4.1.2d (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (500 mm) chez le grand corégone en aval du réservoir Ste-Marguerite 3.

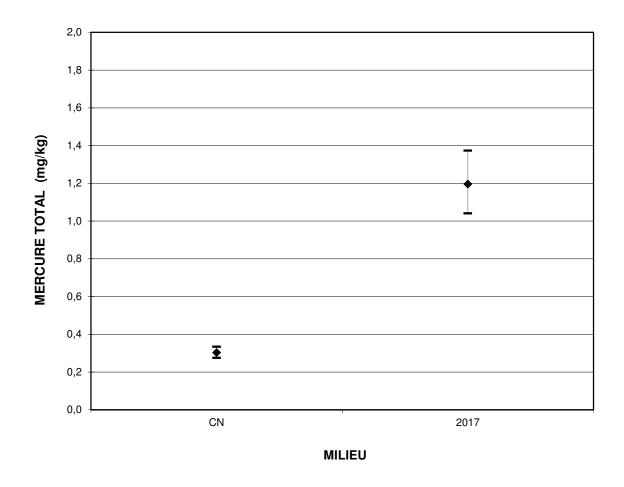
ANNEXE 3.4.2. Évolution temporelle des teneurs en mercure du grand brochet en aval des centrales du complexe Ste-Marguerite.

STATISTIQUES DESCRIPTIVES ET TEST DE COMPARAISONS MULTIPLES

	Mercure total (mg/kg)					Longueur totale (mm)					
Milieu	Nombre total ¹	ST ^{2,3} (700 mm)	CO ^{2,4} (550 mm)	CO ^{2,4} (1000 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.
Grand brochet		-									
Aval SM 2											
Conditions naturelles	59	0,30 (b)	0,19 (b)	0,99 (a)	0,36	0,07	1,13	76	646	220	1000
2017 (19 ans)	30	1,20 a)	0,78 (a)	s.o.	0,94	0,31	2,10	54	591	375	904
Aval SM 3											
Conditions naturelles	59	0,30 (a)	0,19 (b)	0,99 (a)	0,36	0,07	1,13	76	646	220	1000
2017 (19 ans)	30	S.O.	0,62 (a)	S.O.	0,72	0,41	1,60	38	576	472	668

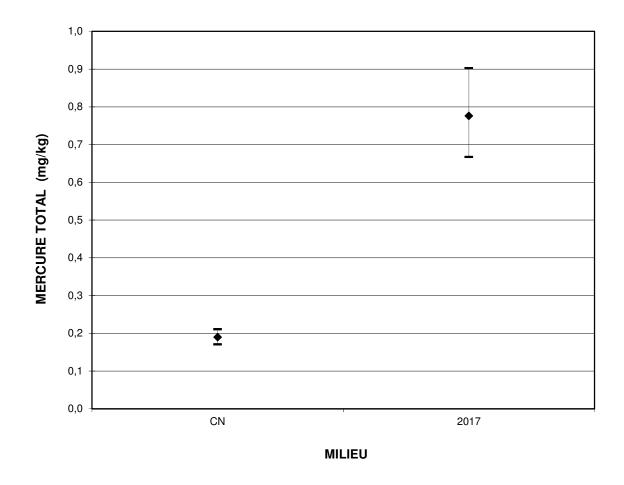

¹ Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).

² Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.


³ Teneur en mercure à la longueur standardisée.

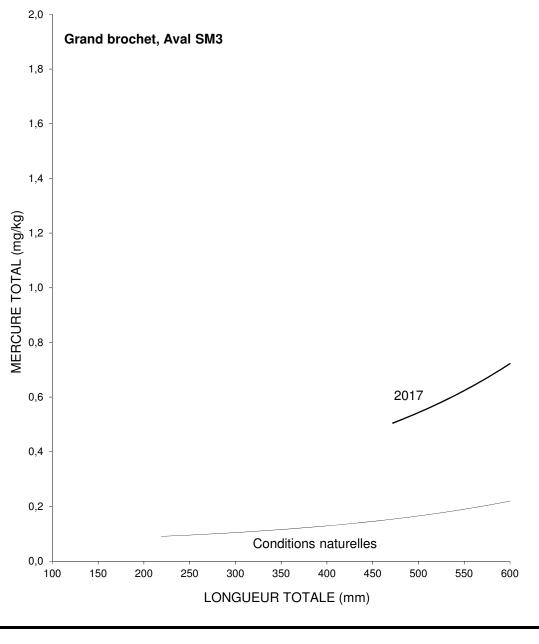
⁴ Teneur en mercure à la longueur de consommation.

s. o. : sans objet.

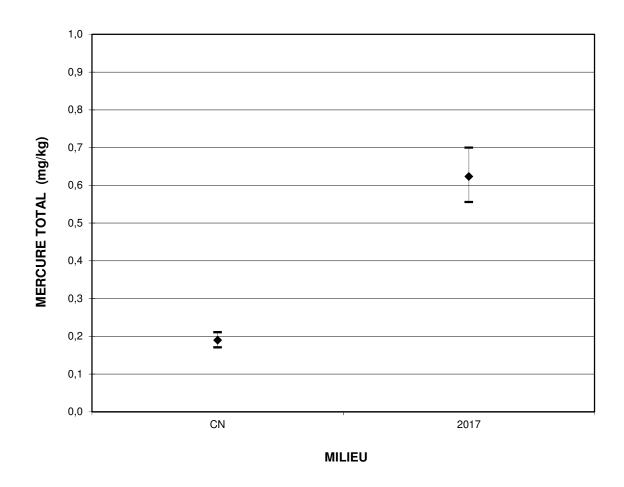

ANNEXE 3.4.2.1 Évolution temporelle de la relation longueur-mercure chez le grand brochet en aval du réservoir de Ste-Marguerite 2.

Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

Milieu	Conditions naturelles b	2017 a
Teneur estimée	0,30	1,20
Limite inf.	0,275	1,041
Limite sup.	0,334	1,374
N	59	30


Annexe 3.4.2.1a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (700 mm) chez le grand brochet en aval du réservoir Ste-Marguerite 2.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%


Milieu	Conditions naturelles b	2017 a
Teneur estimée	0,19	0,78
Limite inf.	0,171	0,667
Limite sup.	0,211	0,902
N	59	30

Annexe 3.4.2.1b (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (550 mm) chez le grand brochet en aval du réservoir Ste-Marguerite 2.

Année	Conditions naturelles	2017
N	59	30
Position	b	a
Forme	a	a

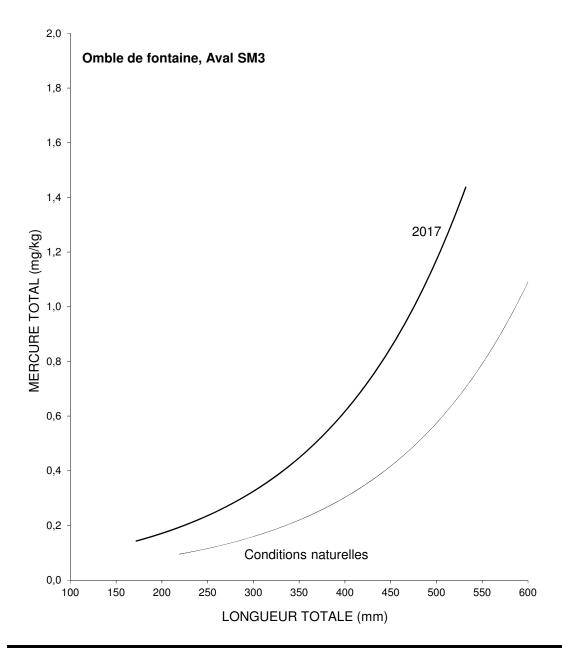
ANNEXE 3.4.2.2 Évolution temporelle de la relation longueur-mercure chez le grand brochet en aval du réservoir de Ste-Marguerite 3.

Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

Milieu	Conditions naturelles b	2017 a
Teneur estimée	0,19	0,62
Limite inf.	0,171	0,556
Limite sup.	0,211	0,700
N	59	30

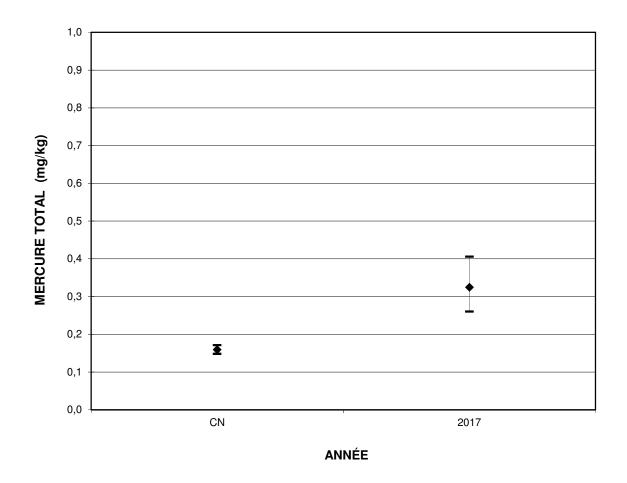
Annexe 3.4.2.2a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (550 mm) chez le grand brochet en aval du réservoir Ste-Marguerite 3.

Évolution temporelle des teneurs en mercure de l'omble de fontaine en aval des **ANNEXE 3.4.3.** centrales du complexe Ste-Marguerite.


STATISTIQUES DESCRIPTIVES ET TEST DE COMPARAISONS MULTIPLES

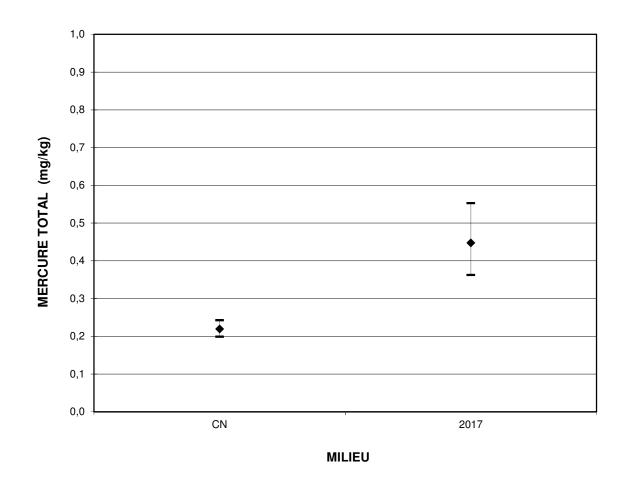
Milieu	Nombre	Mercure total (mg/kg)				Longueur totale (mm)				
	total ¹	ST ^{2,3} (300 mm)	CO ^{2,4} (350 mm)	Moy.	Min.	Max.	Coeff. var. (%)	Moy.	Min.	Max.
Omble de fontaine										
Aval SM 3										
Conditions naturelles	179	0,16 (b)	0,22 (b)	0,13	0,04	0,45	61	248	107	430
2017	14	0,32 (a)	0,45 (a)	0,81	0,13	1,70	65	397	172	532

Nombre de spécimens situés dans l'intervalle de taille ciblé, dont les valeurs en mercure et les longueurs ont été soumises à l'analyse de régression multiple avec variables indicatrices pour la longueur standardisée (ST) et pour les autres longueurs de consommation (CO).


Les valeurs qui sont suivies d'une lettre différente indiquent que les intervalles de confiance (95 %), autour de la teneur estimée, ne se chevauchent pas.

Teneur en mercure à la longueur standardisée.
Teneur en mercure à la longueur de consommation.

Année	Conditions naturelles	2017
N	179	14
Position	b	a
Forme	a	a

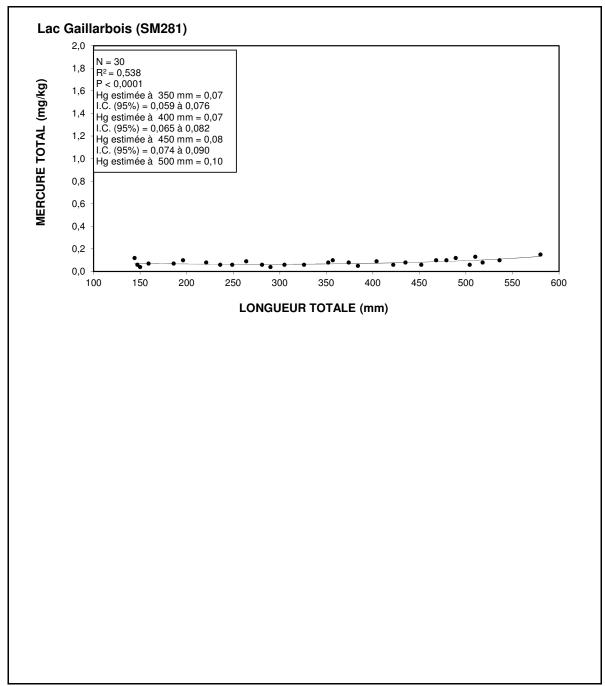

ANNEXE 3.4.3 Évolution temporelle de la relation longueur-mercure chez l'omble de fontaine en aval du réservoir de Ste-Marguerite 3.

Comparaison du mercure à la longueur standardisée au seuil de probabilité de 95%

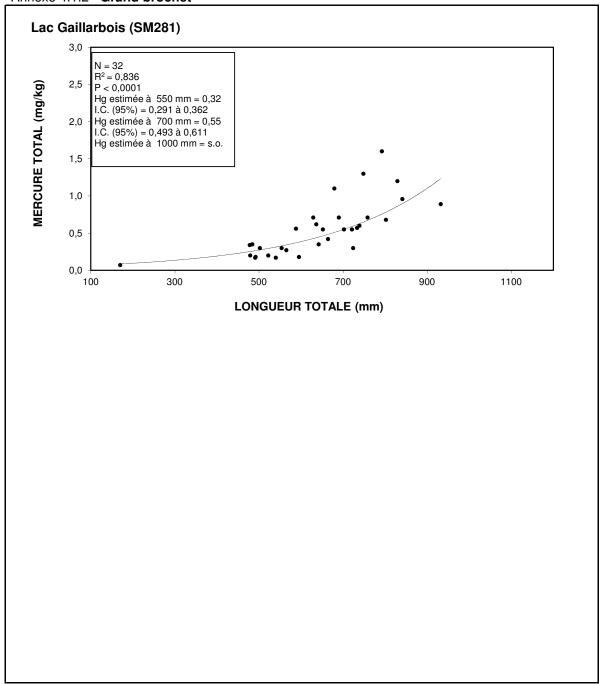
Année	Conditions naturelles b	2017 a
Teneur estimée	0,16	0,32
Limite inf.	0,148	0,260
Limite sup.	0,171	0,405
N	179	14

Annexe 3.4.3a (suite) Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur standardisée (300 mm) chez l'omble de fontaine en aval du réservoir Ste-Marguerite 3.

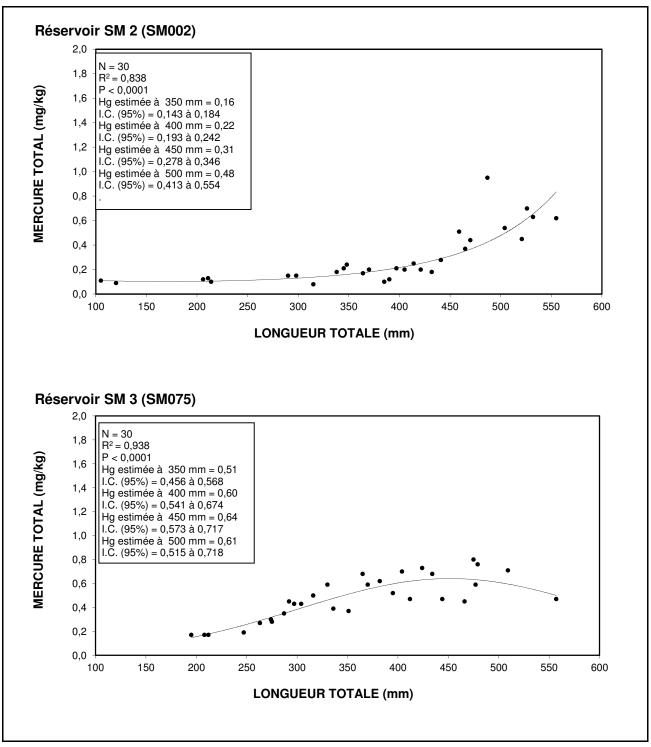
Comparaison du mercure à la longueur de consommation au seuil de probabilité de 95%

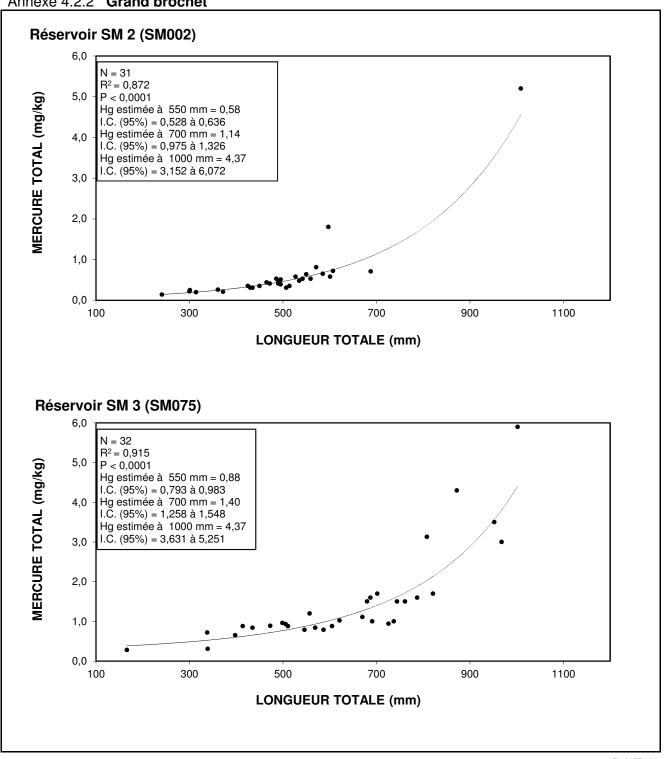

Milieu	Conditions naturelles b	2017 a
Teneur estimée	0,22	0,45
Limite inf.	0,199	0,362
Limite sup.	0,243	0,553
N	179	14

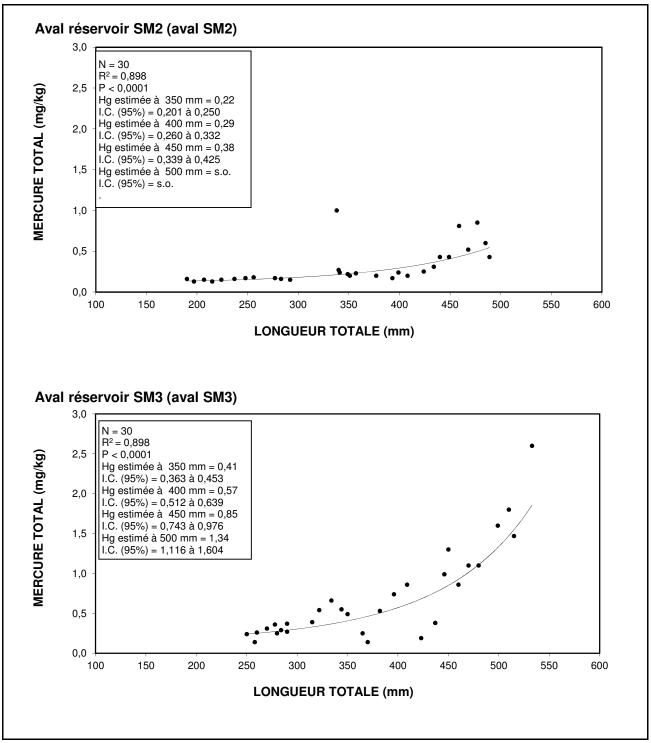
Annexe 3.4.3b (suite)

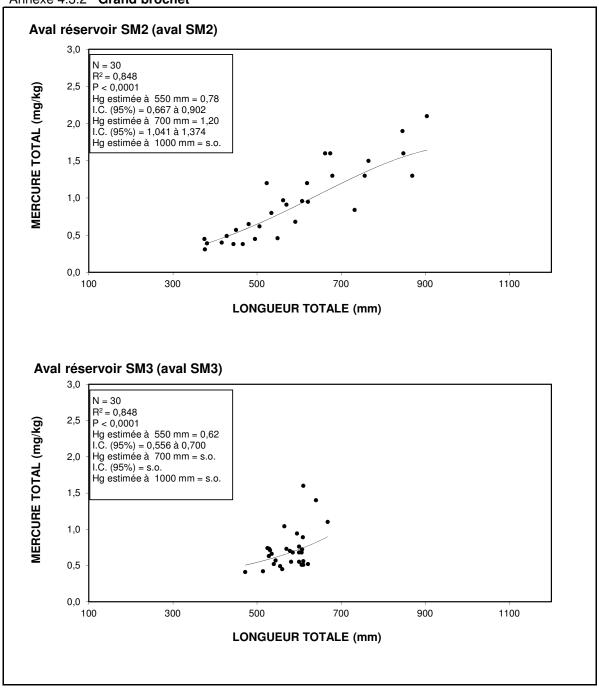

Évolution temporelle de l'estimation et de l'intervalle de confiance (95%) de la teneur en mercure pour une longueur de consommation (350 mm) chez l'omble de fontaine en ava du réservoir Ste-Marguerite 3.

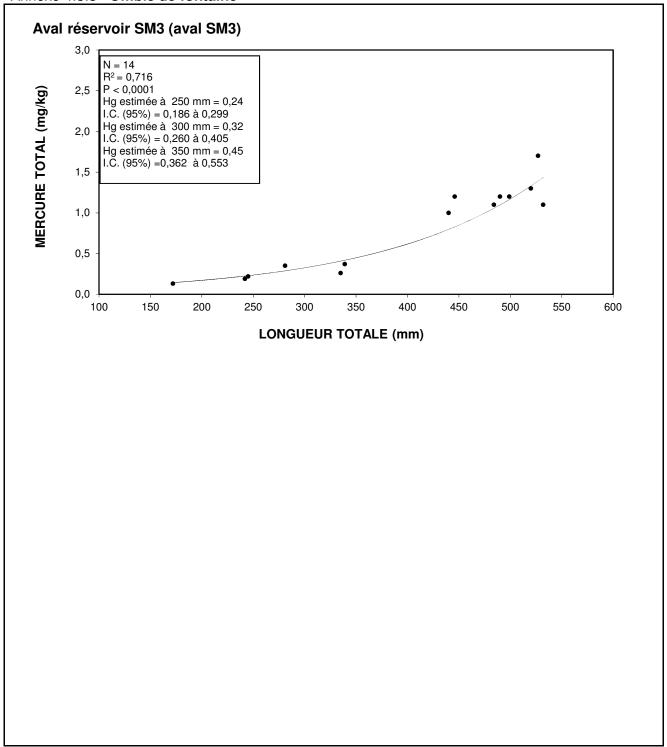
ANNEXE 4 Évolution des teneurs en mercure des poissons de la région de l'aménagement de la Sainte-Marguerite-3 – Diagrammes de dispersion


Annexe 4.1.1 Grand corégone


Annexe 4.1.2 Grand brochet


Annexe 4.2.1 Grand corégone


Annexe 4.2.2 Grand brochet


Annexe 4.3.1 Grand corégone

Annexe 4.3.2 Grand brochet

Annexe 4.3.3 Omble de fontaine

es centrales

Photo 1 Vue aérienne de l'aval immédiat de la centrale de la Sainte-Marguerite-3

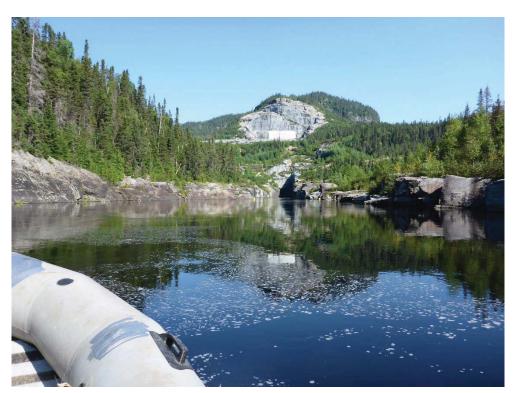


Photo 2 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite 3 et vue du canal de fuite

Photo 3 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-3, zone de rapides

Photo 4 Vue aérienne de l'aval de la centrale de la Sainte-Marguerite-2 jusqu'au barrage de la Sainte-Marguerite-1

Photo 5 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-2 via la centrale de la Sainte-Marguerite-1, panneau d'avertissements

Photo 6 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-2 via la centrale de la Sainte-Marguerite-1, vue de la zone à l'extérieur des estacades

Photo 7 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-2 via la centrale de la Sainte-Marguerite-1, passage entre les estacades

Photo 8 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-2 par la route enjambant le barrage, panneau d'avertissements

Photo 9 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-2 par la route enjambant le barrage

Photo 10 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-2 par la route enjambant le barrage, vue du sentier

Photo 11 Accès à l'aval immédiat de la centrale de la Sainte-Marguerite-2 par la route enjambant le barrage, sortie du sentier

ANNEXE 6	Description des contenus stomacaux des espèces piscivores capturées dans région de l'aménagement de la Sainte-Marguerite-3 en 2017

No séquentiel	Milieu	Station	Espèce	LT (mm)	Masse (g)	Sexe (M, F, IND)	Maturité r	Cote de réplétion	Contenu	Espèce ou taxon	g	LT de la proie (mm)	Masse des proies (g)	État (entier, décomposé, etc.) ou % de digestion	Remarques
	Aval du réservoir SM 3	Aval SM3	ESLU	595	1407,8		2		poisson	COCL	-	200	3	80	
	Aval du réservoir SM 3	Aval SM3	ESLU	909	1462,6	F Z		2 : 25%	poisson	COCL	-	NA	4,6	95	
3	Aval du réservoir SM 3	Aval SM3	ESLU	621	1750	T		4:75%	poisson	COCL	-	NA	10,7	97	
	Aval du réservoir SM 3	Aval SM3	ESLU	909	1342,6	Ц	2 3		poisson	COCL	-	290	0	75	
	Aval du réservoir SM 3	Aval SM3	ESLU	540	260				poisson et chyme	IND	-	82	2,9	15	
9	Aval du réservoir SM 3	Aval SM3	SAFO	440	1195,4	F		: 50%	insectes	Tordense	-	85	3,1	20	100% Papillons de tordeuse
	Aval du réservoir SM 3	Aval SM3	COCL	510	1284,9				IND	ONI	×			75	Ailes
8	Aval du réservoir SM 3	Aval SM3	COCL	446	926,5	M		3:50%	IND	IND	×			50	
6	Aval du réservoir SM 3	Aval SM3	COCL	429	857,7				IND	QNI	×	×		20	
10	Aval du réservoir SM 3	Aval SM3	COCL	437	793		4	2 : 25%	insectes	IND	×		6,9	50	
13	Aval du réservoir SM 3	Aval SM3	COCL	344	388,3	M 1			insectes	Tordeuse	×			26	Papillons de tordeuse
14	Aval du réservoir SM 3	Aval SM3	COCL	291	326,9		4								
	Aval du réservoir SM 3		COCL	322	313,7				insectes	Tordeuse	×			20	Papillons de tordeuse
16	Aval du réservoir SM 3		COCL	270	146,5	D	1		insectes	Tordeuse	×		1,8	50	Papillons de tordeuse
	Aval du réservoir SM 3		COCL	280	173,9		1		insectes	Tordeuse	×			25	
18	Aval du réservoir SM 3		SAFO	520	2515			S	IND	IND	×			26	
	Aval du réservoir SM 3		SAFO	532	2850				insectes	Tordeuse	×	×	×	×	Ins: 25% Os de poisson: 90% (Digestion)
20	Aval du réservoir SM 3	Aval SM3	ESLU	578	1273,5	F 2	2 5	5:100%	poisson	COCL	1	×	49,7	09	
21	Aval du réservoir SM 3	Aval SM3	ESLU	572	588,6			7 : vide							
22	Aval du réservoir SM 3	Aval SM3	ESLU	529	1033,7			%	poisson	COCT	-	235	73,1	50	
3	Aval du réservoir SM 3	Aval SM3	ESLU	514	845.3				noisson	SAFO	-			09	
26	Aval du réservoir SM 3	Aval SM3	COCL	447	928,2	4			insectes	Tordense	×			50-80	
27	Aval du réservoir SM 3	Aval SM3	COCL	432	866,3				insectes	Tordeuse	×			80	
28	Aval du réservoir SM 3	Aval SM3	COCL	348	383,4	F			insectes	Tordeuse	×	×	9,5	40	
6	Aval du réservoir SM 3	Aval SM3	COCL	396	651,7	Σ			insectes	Tordeuse	×			25	
30	Aval du réservoir SM 3	Aval SM3	COCL	284	193,3				insectes	Tordeuse	×		2,7	40	
	Aval du réservoir SM 3	Aval SM3	SAFO	527	2090		4				×	×		×	
32	Aval du réservoir SM 3	Aval SM3	SAFO	446	1101				insectes	Tordense	×	×	9,5	20	
33	Aval du réservoir SM 3	Aval SM3	SAFO	490	1777,2	F		6 : chyme			×	×		×	
	Aval du réservoir SM 3	Aval SM3	SAFO	281	278,3				insectes	Tordeuse	×	×		80	
35	Aval du réservoir SM 3	Aval SM3	SAFO	499	1751,1	ω Σ			insectes	Tordeuse	×	×	1,3	06	
	Aval du réservoir SM 3	Aval SM3	COCL	470	1095,9			: 100%	insectes et chyme	Tordeuse	×			50	75% insectes / 25% chyme
39	Aval du réservoir SM 3	Aval SM3	COCL	468	1101,1			. 0	insectes	Tordeuse	×			25	
	Aval du réservoir SM 3	Aval SM3	ESLU	581	1169,5	ω W	8	: 75%	poisson	SAFO	×	130	20,4	09	
41	Réservoir SM 3	SM075	ESLU	952	6150			' : vide							
42	Réservoir SM 3	SM075	ESLU	761	2950			5:100%	poisson	COCL	1	357	35,2	10	proie = femelle stade 3
3	Réservoir SM 3	SM075	COCL	557	1950			S	insectes et chyme	Tricoptère	×	×		10	
44	Réservoir SM 3	SM075	COCL	509	1444,6		4	3:50%	insectes et chyme	Tricoptère et autres	×	×		15	
رر	Réservoir SM 3	SM075	COCL	402	548,1			3S	insectes et chyme	IND	×	×	×	90	
46	Réservoir SM 3	SM075	COCL	292	164,9										
47	Réservoir SM 3	SM075	COCL	412	573			2 : 25%	insectes et chyme	Tricoptère	×	X	×	15	
48	Réservoir SM 3	SM075	COCL	330	225	Q.	1 7	: vide							
	Réservoir SM 3	SM075	COCL	392	534,6	F		6 : chyme							
2.	Réservoir SM 3	SM075	COCL	443	795,2		3 1	: traces	mollusques et chyme	IND					
53	Réservoir SM 3	SM075	COCL	371	365,2	M 1		6 : chyme							
54	Réservoir SM 3	SM075	COCL	321	250,3	F 3	3 7	7 : vide							
10	Réservoir SM 3	SM075	COCL	294	208,7	Е									
26	Réservoir SM 3	SM075	ESLU	1002	2750	Е Е			poisson	IND	×			×	5 vertèbres
	Réservoir SM 3	SM075	ESLU	289	2645			: 100%	poisson	COCL	1	335		20	
58	Réservoir SM 3	SM075	ESLU	621	2050	<u>В</u>			poissons	COCL	2	285/230	248,1	35	
61	Réservoir SM 3	SM075	ESLU	435	438,2	Ц	2	6 : chyme							
62	Réservoir SM 3	SM075	ESLU	605	1397,9			6 : chyme							
63	C 1 1 C	1													

Annexe 6	Description des contenus stomacaux des espèces piscivores capturées au complexe Sainte-Marguerite en 2017	nus stomacau)	c des espè	ces piscivor	es capturé	es au complexe	Sainte-Marg	uerite en 2017	-		_	_	_	-
64	Réservoir SM 3	SM075	ESLU	737	2690	∑ լ	8	7 : vide						
65	Reservoir SM 3	SM0/5	ESLU	744	2690	<u>+ </u> -	80 (6 : chyme			,	()	C L	
99	Réservoir SM 3	SM075	ESLU	744	2950	<u> </u>	ω (5:100%	poissons	CACA et IND	1+1/4 190	95,2	50	1/4 = Morceau d'un autre poisson
	Réservoir SM 3	SM075	ESLU	787	3390	<u>u </u>	ω,	6 : chyme				ļ		
	Réservoir SM 3	SM075	ESLU	729	2425	ш :	ω (1 : traces			×	80	06	
69	Reservoir SM 3	SM075	ESLU	339	227,1	∑ ≥	7 +	/ : vide						
73	Réservoir SM 3	SM075	COCI	444	853.1	<u> </u>	- m	1 : traces	insecte, chyme et mollusque	QN		×	80	
74	Réservoir SM 3	SM075	COCL	434	573,7	. LL	3	2 : 25%	insectes	deuse et trichoptère	: ×	×	10	
	Réservoir SM 3	SM075	COCL	391	539,8	上	3	2 : 25%	insectes et chyme			×	30	
	Réservoir SM 3	SM075	COCL	404	498,6	F	3	6 : chyme						
77	Réservoir SM 3	SM075	COCL	370	383,3	M	1	6 : chyme						
78	Réservoir SM 3	SM075	COCL	351	363,7	Ŧ	3	6 : chyme						
	Réservoir SM 3	SM075	COCL	329	274,1	Д	3	7 : vide						
80	Réservoir SM 3	SM075	COCL	274	362,9	Σ	-	1 : traces	IND	IND	×	×	92	Contenu estomac indéfini
	Réservoir SM 3	SM075	COCL	366	326	Σ	1	7 : vide						
	Réservoir SM 3	SM075	COCL	370	408	ш	3	1 : traces	IND		×	×	95	Contenu estomac indéfini
	Réservoir SM 3	SM075	ESLU	569	1103,9	Σ	1	2 : 25%	s et chyme		×	×	50	
	Réservoir SM 3	SM075	ESLU	587	1542,1	Σ	1	4 : 75%	poisson	COCL	1 228	8,07	09	
	Réservoir SM 3	SM075	COCL	466	910,8	Σ	-	6 : chyme						
	Réservoir SM 3	SM075	COCL	422	765,9	Ш	3	6 : chyme						
88	Réservoir SM 3	SM075	COCL	336	305,1	Ш	3	6 : chyme						
06	Réservoir SM 3	SM075	COCL	395	516,4	Ш	3	6 : chyme						
91	Réservoir SM 3	SM075	COCL	381	481,7	F	3	7 : vide						
	Réservoir SM 3	SM075	COCL	370	424,9	Ь	3	2 : 25%	insectes		X	×	25	
96	Réservoir SM 3	SM075	ESLU	168	26,4	IND	1	4:75%	poisson	COBA	1 43	1,1	25	
26	Réservoir SM 3	SM075	ESLU	029	2175	M	2	5:100%	poisson	COCL	1 298	161,8	30	
100	Réservoir SM 3	SM075	ESLU	206	658,6	Ŧ	8	6 : chyme						
101	Réservoir SM 3	SM075	ESLU	691	2150	L	8	6 : chyme						
102	Réservoir SM 3	SM075	ESLU	414	428	ЩЦ	ω ,	4 : 75%	poisson	CACA	1 175	51,9	40	
	Reservoir SM 3	SM075	ESLU	546	965,9	<u> </u>	ω (7 : vide				>		
	Reservoir SM 3	SM0/5	COCL	403	/14,4	<u> </u>	e (1 : traces	Insectes	Iricoptere	×	×	01	
	Reservoir SM 3	SM075	ESLU	8/2	4445	<u> </u>	8 0	/ : vide						
	Reservoir SIM 3	SM0/5	ESEC	080	3,7	∑ և	7 0	/ : Vide			>	o o	C	
109	Reservoir SIM 3	SM075	ESLU	55/	912,14	<u> </u>	20 α	2 : 25%	poisson		× >	2,33	80	
120	Aval du récontoir CM 2	SIMO/S	ESEU	211	192,2	<u>L U</u>	∞ <	2 : 25% 7 : vide			×	7, 1	82	
120	Aval du réservoir ON 3	Aval Sivis		404	1,1	_ 2	t c	7 . vide	0;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
121	Aval du réservoir SM 3	Aval SIVIS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	244	0,000	2 2	0 0	1 : If aces	ar debris	-	020	7 0 7	C	
124	Aval du réservoir SM 3	Aval SM3	ESEU	610	1580 2	Σ ⊔	ο o	3 · 50%		COCL	7 7 7	150,4	20	
126	Aval du réconvoir CM 2	Aval CMS	- C - C - C - C - C - C - C - C - C - C	770	1,003,4	_ 2	7 0	9 . 50%	TOSSOIL CONTROL	CHVS	100	0,0 T	93	
127	Aval du réservoir SM 3	Aval SM3	ESLU	566	1329	ΣΣ	7 8	5:100%		COCL	1 261	101.5	09	
128	Aval du réservoir SM 3	Aval SM3	ESLU	541	1138,9	Σ	8	5:100%		COCL	2 248	122,8	mai-95	
129	Aval du réservoir SM 3	Aval SM3	COCL	533	1510,9	Ш	3	3:50%		ıse		×	25	
130	Aval du réservoir SM 3	Aval SM3	COCL	499	1151	Σ	3	2 : 25%	chyme et insectes		×	×	50	
131	Aval du réservoir SM 3	Aval SM3	COCL	396	626,7	Ш	3	5:100%	insectes			×	25	
132	Aval du réservoir SM 3	Aval SM3	COCL	394	565,4	F	3	3 : 50%	insectes	Tordeuse		×	25	
133	Aval du réservoir SM 3	Aval SM3	COCL	334	345,8	F	3	4:75%				×	20	
136	Aval du réservoir SM 3	Aval SM3	COCL	323	322,2	上	3	2:25%	insectes	Tordeuse		×	25	
137	Aval du réservoir SM 3	Aval SM3	COCL	286	217	ш	3	2 : 25%				×	25	
138	Aval du réservoir SM 3	Aval SM3	COCL	353	432,2	Σ	1	2 : 25%	insectes	Tordeuse		×	50	
139	Aval du réservoir SM 3	Aval SM3	ESLU	531	880,7	ш 2	7 5	7 : vide			>	>	G	
140	Aval du reservoir SM 3	Aval SM3	OALO	442	100,7	2 2	_ ,	3:50%		Todanse	<>>	< >	20 20	
	Avai du reservoir Sivi 3	AVAI SIVIS	SAFO	2/1	22,8		– 0	Z : Z5% F : 100%				X 227	70	
142	Déservoir SM 3	SMO75	ESED	900	0000	<u>L U</u>	0 0	3 · 100% A · 75%	polssons	COCL	1 260	170.0	40	
	C INC IION ISSUE	SIMIONS	ESEU	170	2090	<u>L</u>	0	4.73%		OOOL	700	۵,0/۱	04	_

	SM075	ESLU	473	633,2	ш	5	3:50%	poisson	COLO	1 155		17	09
Réservoir SM 3	SM075	ESLU	338	198,3	<u> </u>	- α	7 : vide	cocion		1		1400	90
	SMO75	באבט	310	07.5,1	<u>. u</u>	o «	5 100 % Priv. 7	- Consider	COOL	1		142,2	62
	SM075	7000 COCL	442	809.8	. ц.	o (c)	7 : vide						
	SM075	COCL	401	206	L	က	6 : chyme						
	SM075	COCL	360	403,2	Ł	3	1 : traces	insecte et chyme	IND	×		×	80
	SM075	COCL	375	394	ட	က	7 : vide						
	SM075	COCL	365	382	Σ	-	2:25%	insecte	IND	×		×	80
	SM075	COCL	287	188,2	Σ	က	7 : vide						
	SM075	COCL	287	178,3	ш	က	7 : vide						
	SM075	COCL	316	235,7	Σ	2	7 : vide						
	SM075	ESLU	398	340,5	Σ	7	7 : vide						
	SM075	ESFN	291	135,9	Σ	2	7 : vide						
Réservoir SM 3	SM075	COCL	382	404,5	ഥ	က	7 : vide						
	3M075	COCL	332	295,6	ш	က	1 : traces	<u>ND</u>	<u>ND</u>	×		×	×
	3M075	COCL	297	183.9	ш	က	7 : vide						
	SM075	COCL	266	331.9	ш	က	7 : vide						
Réservoir SM 3	3M075	ESI	786	3525	Ц	00	2 : 25%	noisson	TOOS	1 270		141.3	20
	3M075		406	590 1	. ц) e	abiv - 7						
	7,407.0	200		7 7	<u>. L</u>	0 0	DD - C						
	SIMIO / 5	COCL	300	417,4	⊥ :	n (e : cnyme						
	SM0/5	COCL	365	35/	Σ	က	6 : chyme						
	SM075	COCL	304	246,4	Д	က	7 : vide						
	SM075	COCL	392	506,1	ш	က	6 : chyme						
	SM075	COCL	412	541.1	ш	က	7 : vide						
	3M075		251	335 3	. 2) -	abiv. 7						
Bésezvoir SM 3	SMO75	1000	275	150,3	ЕЦ	- œ	v vide						
	SM075		286	177.5	. 2) m	7 · vide						
Básavoir SM 3	SMO75	1000	200	0, 70 K) -	obiv . 7						
	SMO75	1000	105	73.7	2		v vide						
Básenvoir SM 3	SMOZE	E011	726	20,1	2	- α	7 - vide						
	SMOZE	- C - C - C - C - C - C - C - C - C - C	000	2750	Σ ⊔	0 0	7 - VIGG	2000				01.0	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
	SINIO S	LSEO	7100	7 20 7	_ L	0 0	2 . 2 . 7	TIOSSION .	0.5+0.0:H			2,12	
	SIM073	7000	418	1,000,1	LL	၇ (I : Iraces	Illsectes	Ticopiere	< ;		0,0	0 ;
Reservoir SIMI 3	SM075	7 500	477	1193,7	L L	უ (%67:7	Insectes	Tricoptere			33,9	01
	SM075	COCL	424	547,4	L	က	7 : vide						
Réservoir SM 3	SM075	COCL	390	393,8	ш	က	7 : vide						
	SM075	COCL	327	273,8	Σ	က	7 : vide						
Réservoir SM 3	SM075	COCL	332	323,2	Д	3	7 : vide						
	SM075	ESLU	177	30,3	IND	1	2:25%	poisson	COBA			0,2	50
	SM075	ESLU	169	29,5	ш	1	3:50%	poisson	COBA	2 42/X	×	8,0	40/80
	SM075	ESLU	175	32,4	Σ	1	7 : vide						
	SM075	ESLU	173	31	ш	-	7 : vide						
	3M075	ESLU	170	31.1	Щ	-	4:75%	poisson	COBA	1 52		1.9	40
	3M075	ESLU	166	28.2	Ц	-	7 : vide						
Béservoir SM 3	3M075	ESI I	171	30.6	. ≥	-	3 · 50%	noisson	COBA	1 42		3.4	50
	SMOZE		187	35.6	ш		2 . 50 . 7						
CNA	SIVIO / SI	10 E	101	0,000	_ -	<u>- c</u>	epir. /		+	1			
	AVAI SIVIE	10L0	202	320,0	LU	Σ C	7 · VIUT	\$ 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>-</u>	-		ζ,	CC
Avai du reservoir SM 2	Avai SMZ	ESEU	400	364,9	<u>_ </u>	N (3:50%	poisson	COPL	100		12	80
	4val SM2	ESLU	458	530,5	Σ	7	7 : vide						
Aval du réservoir SM 2	4val SM2	ESLU	502	652,3	ш	ω	6 : chyme						
	4val SM2	ESLU	206	787,4	Ь	8	4:75%	poisson	CACA	1 ×		28,2	80
	Aval SM2	ESLU	498	701,3	Σ	2	3:50%	poisson	COPL	1 117		12	2
	Aval SM2	ESLU	537	787,1	Σ	7	7 : vide						
	Aval SM2	ESLU	549	898,2	Σ	2	6 : chyme						
	CAN CLAN		710	1 200	Ц	α	Poiv - 7						
	Wal SIVIZ	ESEC	0	4,000	<u>_</u>	0	anı . /						

×				×	××				250	00	20							06		95	80	80	80	80	08	00	00	20										95	10	22	×	85		09	65		· 보	000	DØ.
6,3				+	2,5				45.4	t O	13,9							8,8		1,8	4	27	1,7	1,1	8,0	0,0	5.	7,6									;	×	14.7) F	×	×		50,6	34,5		77 %	14,3	//
<				×	××				160	000	102							×		×	×	×	×	× >	× >	< >	<	×									:	×	>	<	×	×		55/182	140		110	7 .	<u> </u>
<				×	××				-	-	1							1		1	×	×	×	××	× >	< >	<	×									:	×	×	<	×	×		2	1		<u> </u>		_
Lordeuse				CNI	IND				4040		COPL							CACA		QNI	ND	QN I	QN I					ND									!	QNI	l arves odonates		×	ND		TOOO	CACO		ΔaOO	COBA	7007 -
Insectes				insectes	insectes				nossion		poisson							poisson		poisson et chyme	insectes	insectes	insectes	insectes	Insectes	insectes	וואפרופא	insectes										poisson et chyme	insectes		IND	insectes et chyme		poissons	poisson		nossion	poisson	Doisson
0/ 07 - 1	7 : vide 6 : chyme	6 : chyme	7 : vide	6 : cnyme 1 · traces	2:25%	6 : chyme	7 : vide	/ : vide	6 : cnyme 4 · 75%	7 : vide	2:25%	6 : chyme	7 : vide	7 : vide	6 : chyme	7 : vide	7 : vide	2:25%	7 : vide	2 : 25%	3:50%	2:25%	2 : 25%	2:25%	2:25%	2 . 50%	7 : vide	3:50%	7 : vide	7 : vide	7 : vide	6 : chyme	6 : Criyine 7 : vido	7 : vide	6 : chyme	7 : vide	6 : chyme	1 : traces	6 : Criyine 4 : 75%	6 . rhyme	1 : traces	2:25%	7 : vide	4:75%	3:50%	6 : chyme	7 : Vide	5 · 100%	2 : IOU%
7	1 2	2	2 0	æ c	3	2	2	. 7 0	α α	7 -	. 8	2	2	2	2	7	2	2	8	1	က	-	-		- -	- -	-	. 4	8	2	2	3	4 4	t 2	1	1	8	2 5	να	0 0	2 8	က	1	2	2	2 0	8 0	να	α
141	ON M	ட	ΣL	⊥ ≥	Ш	Ь	∑ :	ΣL	ь ц	QNI	ш	Ł	F	ш	Σ	Σ	ப	Ь	ш	QN N	ட			QN Q				1 1	止	F	Ŧ	ΣL		LL	Σ	M	L I	<u>u u</u>	∟∑	ш	_ ≥	ш	M	M	ъ.	ц 2	∑ ц	<u> </u>	L
t (113,6 931,5	728,3	728,3	295,3	693,5	2150	1009,3	851,3	1428 9	479.7	840,1	1649,2	423,2	827,2	731,2	618,4	3295	988	908,1	284,3	362,4	222,5	371,3	78,3	80	00,00	54.1	856.5	1007,4	824,9	2410	1443,6	1323,1	256.4	128,1	106,3	2995	1466,2	1588 4	543.2	1085,3	957,4	124,2	1247	1393,6	792,7	1069,5	1732 1	1/32,1
	236 532	519	526	381	429	629	549	526	732	450	540	674	428	532	494	466	756	520	534	375	341	292	268	217	224	002	190	436	570	531	441	510	500	315	252	240	829	652	59.1 646	478	476	468	250	288	632	522	565 191	491 666	999
		ESLU		ESLU							ESLU			ESLU															ESLU									ESLU								ESLU			
				Aval SM2					Aval SM2 Aval SM2																Aval SM2				Aval SM2				SIVIZOI					SM281			SM281				SM281		SM281		
	Aval du réservoir SM 2 Av				Aval du réservoir SM 2 Av		Aval du réservoir SM 2 Av		Aval du réservoir SM 2 Av													_	Aval du réservoir SM 2 Av		Aval du réservoir SM 2 Av		Aval du réservoir SM 2 Av		Aval du réservoir SM 2 Av				Lac Gaillarbois SN						Lac Gaillarhois SN								Lac Gaillarbois SN		
				21/			221	222	225	227		229									240				244	245	249					254	522	259	260	261	262				267				275	276	2// 278	279	

			1,1011	0/0/.† 2 1.10/1	0/0/.+	poissori	LOLO	C / Z	,10	5	00	
Lac Gaillarbois SM	SM281 ESLU	538	872,2	Т <u>Т</u>	/ : vide			1				
	SM281 ES	1 0	6,986	. W	3:50%	poisson	COCL	1 140	12,5	5	06	
		90	1835,2		4:75%	poisson	ГОГО	1 230	72,1	-	40	
		16	2140	8	7 : vide							
		59	1223,2		6 : chyme							
	SM281 ES	35	1219,1	M	7 : vide							
Lac Gaillarbois SM		36	73,7	т ;	7 : vide							
	SM281 COCL	32	391,7		7 : vide							
		74	441,8		3:50%	insectes	IND	×	2,8		09	
		52	391,7	F	7 : vide							
	SM281 ES	32	1844,2		6 : chyme							
)2	1903,9		7 : vide							
		81	2095		7 : vide							
	SM281 ESLU	38	2260		2:25%	poisson	CACO	1 125	19,1	-	2	
		15	974,3		7 : vide							
		33	2260		7 : vide							
Lac Gaillarbois SM	SM281 ES	24	2125		1 : traces	poisson	COBA	1 52	2,3		2	
		16	2450	M 1	7 : vide							
	SM281 COCL	33	632,2	M 1	6 : chyme							
		75	8,606	<u>ღ</u>	6 : chyme							
		6/	479,6	Α	6 : chyme							
	SM281	90	347.0		e rohyma							
Lac Gaillarbois		5.7	777		6 · chymo			1				
			470.0		0 . chime							
		42 52	4/8,2		o : cnyme							
	SMZ81	5) L	313,4	<u>- ,</u>	ь : спупіе	1	<u>:</u>	>	>			
		2 2	7,087,	_ ,	1 : traces	insectes et cnyme	ONI	<u><</u>	×		09	
	SM281 COCL	6 L	458,3	<u>-</u> -	6 : chyme			+	1			
Lac Gaillarbois SM	SM281 CC	75	222	<u>- ;</u>	6 : chyme			+	1			
		£ 5	130,9	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ : vide			1				
	SM281 CC	36	101,7	IND 1	6 : chyme							
		61 7	127,8	_ <u>_</u>	6 : cnyme			1				
		5	39,5	_ : M :	6 : cnyme							
	SM281 COCL	36	102,2	W :	7 : vide							
		23	129,9	M	6 : chyme							
Lac Gaillarbois SM	SM281 COCL	29	29,5	IND 1	6 : chyme							
		90	29,7	IND 1	/ : vide							
		17	25,1	M	1 : traces	insectes	IND	×	×		70	
		52	27,9	Ω	7 : vide							
		44	20,5	M	7 : vide							
	SM281 ESLU	35	2525	M	7 : vide							
		53	1375,6	F 2	7 : vide							
		34	1772,6	<u> </u>	3:50%	poisson	COCL	1 156	38,2	2	40	
		39	219,8	F 1	7 : vide							
		21	79,1	IND 1	7 : vide							
	SM281 CC	34	153,1	F 2	6 : chyme							
		34	3040	F 4	7 : vide							
		18	1853		6 : chyme							
	SM281 ESLU	86	1256,2	F 2	2 : 25%	poisson	<u>N</u> D	×	×		06	
		36	1388,4		6 : chyme			_				
Lac Gaillarbois SM		36	1668,9	ı σ	6 : chyme			_				
		81	1667.8		6 : chvme							
		g	1061.9		6 · chyme			1				
Lac Galllarbois SIV	SM281 COCL	200	1201,5 441E	T 2	6 : chyme			1				
		λ Σ	1140	<u> </u>	o : cnyme			+				
Lac Galllarbois SIV	SM281 COCL	3 2	857,4		6 : chyme				+		<u>+</u>	
		4 7	2,619		6 : cnyme			+				
ac Gaillarbois SM281		5	1169 A	7	e chyme				_			
		2	- '00'	-	5111/5115				-			

10		50		>	20		20	50		70			4 1	20	CL	20	L	C++					30					50	70				25							C L	OC.				10						40			40			
2,5		59,5			7 8 8	ţ.	4,2	13,7/8,4		5,7				×		86,1	7 7 7	143,3										1,1	10,8				×								۲,3				25,1						0,4			3,7			
		9						112/112									0.00	0/250											1				162/145																								
×		186			< ×		×			×				×		240							<						111												4 5				122				1		×			99			
X QNI		CACA			NN UNI			COPL		IND				X		COCL							Larves (sp. INU)					X	COCL				COCL							< () L	FECA				CACO						X ND			COBA 1			
insectes		poisson			Cosion		insectes	poissons		poisson				insectes		poisson	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	poissons					Insectes					insectes	poisson				poissons								poisson			-	poisson						insectes			poisson			
2 : 25%	7 : vide	5:100%	7 : vide	7 : vide	o : cnyme o · o5%		5:100%					7 : vide	7 : vide			%001:5		5 : 100% 7 : vido	7 . vide	7 . vide	/ . vide	/ : Vide	1 : traces	7 : vide	7 : vide	7 : vide	6 : chyme	1 : traces		6 : chyme	7 : vide	7 : vide		6 : chyme	7 : vide	7 : vide	7 : vide	7 : vide	/ : Vide	/ : Vide	3 : 50%	o . criyirie	/ : vide	7 : vide	3:50%	/ : Vide	6 : chyme	6 : chyme	7 : vide	7 : vide	1 : traces	7 : vide	7 : vide	3:50%	6 : chyme	7 : vide	7 : vide
2	8	2	2	N C	V 0	1 (2)	1	2	2	2	2	8	2	- 0	. 7 (χ,	- c	V C	v c	V C	7		4	5	2	2	2	2	-	3	2	3	2	2	2	- 13		(Ν.	.V. T	- c	7,	- 0	5	Ν,	_	1	2	7	1	-	2	1	2	2	1	2
ш	Σ	ш	L I	L 2	ΣΣ	Σ	ш	ட	ш	止	ட	ட	∑լ	<u> </u>	≥ :	≥ :	≥ ≥	≥ ≥	2	2 2	2 2	≥ :	≥ :	Σ	ш	≥	ட	ıL I	ட	ட	Σ	Σ	ட	Σ	Σ	<u>ц</u> :	ON:	ON L	L	<u> </u>	N L			∑ :	∑ :	≥ :	Σ	ட	Σ	QN	Σ	ட	Σ	ഥ	止	IND	Ш
540,5	8'906	758,6	678,2	135,8	1180,9	800,3	189,1	899	748,8	934	696,4	575	780,9	205,6	1/4/,1	1/64,2	643,3	16000	1693,0	0,00	90,9	8/	3360	1585,7	1503,7	1219,5	2440	627,4	749,4	602,6	326,6	54,5	1817,7	1800,7	1908,9	250	133	81,1	612,1	1/98,4	454.0	451,9	90,5	2385	31/5	391,9	567,5	641,3	723,2	198,9	112	311,6	86	677,1	324,1	100,5	300,5
466	556	521	497	579	186	530	283	480	502	256	492	522	535	7/7	6/9	642	4/9	674	1 /0	007	237	17.7	299	661	699	588	758	492	502	400	340	196	664	721	715	335	234	224	484	789	0/1	3/3	228	739	841	361	396	402	422	290	240	338	234	404	340	233	326
ESLU	ESLU	SLU	ESLU	ESLU	ESEU	ESLU	COCL	SLU	ESLU	SLU	SLU	ESLU	ESLU	COCL	SEU	SEU	ESEU	SEU SI II	350	700	COCL	JOC'E	ANA	SLU	ESLU	SLU	SLU	ESLU	SLU	COCL	COCL	CCL	SLU	ESLU	ESLU	COCL	CCL	CCL	ESLU	SEO	ESCO	7 5		ESLU	SLU	COCL	CCL	CCL	COCL	COCL	CCL	CCL	COCL	COCL	COCL	COCL	100;
Aval SM2 E			Aval SM2 E		Aval SM2 E			Aval SM2 E						Aval SMZ C																																											
: —															W/O	SM281	SMZ81	SIVIZB	OIM	SIMIZOI	NO O	W C	SMZ81	SM.	SM281	SM281	SM281	SM281	SM.	SM281	SM	SM281	SM281	SM281	SM281	SM.	SM.	SM	SMZ81	SMZ81	SIMEST	NO C	WS C	SM281	WS C	SMZ81	SM281	SM281	SM281	SM.	SM281	SM.	SM28-	SM281	SM281	SM;	SME
Aval du réservoir SM 2	Aval du réservoir	Aval du réservoir	Aval du réservoir SM 2	Aval du reservoir	Aval du réservoir SM 2	Aval du réservoir SM 2	Aval du réservoir	Aval du réservoir	Aval du réservoir SM 2	Aval du réservoir	Aval du réservoir	Aval du réservoir SM 2	Aval du réservoir SM 2	Aval du reservoir	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Galliarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Galllarbois	Lac Galliarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Gaillarbois	Lac Galliarbois	Lac Gaillarbois										
364	365	368	369	370	372	373	374	375	376	377	380	381	382	383	384	385	386	387	000	200	382	393	395	398	399	400	415	418	419	420	421	423	424	428	431	432	433	434	436	437	450	439	440	450	453	454	455	456	457	458	459	460	461	462	465	466	467

Annexe 6	Description des contenus stomacaux des espèces piscivores capturées au complexe Sainte-Marguerite en 2017	enus stomacau	x des est	pèces pisc	ivores capt	urées au cα	mplexe Sainte-I	larguerite en 2017	Ī	H			-
468	Lac Gaillarbois	SMZ81		308	228,4	≥ ≥	- c	6 : cnyme					
474	Lac Gaillarbois	SM281	ESLU	802	3275	<u>L</u>	1 (2)	5:100%	poissons	COCL	2 ×	1530	75
475	Lac Gaillarbois	SM281	ESLU	726	2210		2						
478	Lac Gaillarbois	SM281	ESTN	554	887,5	Щ	2	7 : vide					
	Lac Gaillarbois	SM281	COCL	499	1246,		4	7 : vide					
	Lac Gaillarbois	SM281	1000 COCT	452	927,8	∑ 2	ကျ	6 : chyme			1		
	Lac Gaillarbois	SM281		245	133.3			o : criyine 7 : vide					
483	Lac Gaillarbois	SM281	COCL	320	278,1			6 : chyme					
	Lac Gaillarbois	SM281	COCL	337	318,7			6 : chyme					
	Lac Gaillarbois	SM281	COCL	318	230,2			6 : chyme					
486	Lac Gaillarbois	SM281	7000	254	124,3			7 : vide					
	Réservoir SM 2	SM002	ESLU	527	840.8	. ≥	- 2	7 : vide					
	Réservoir SM 2	SM002	COCL	214	83,4		-	7 : vide					
	Réservoir SM 2	SM002	ESLU	246	78,2		1	7 : vide					
493	Réservoir SM 2	SM002	ESLU	529	950,9	∑ L	2 0	7 : vide					
	Reservoir SM 2	SIMOUZ	ESEC	47D	43/		7 -	/ : Vide					
	Réservoir SM 2	SMOOZ	ESEC ESEC	186	603 3	LZ	- 0	7 : VIGE	200000	VODA	38	0 1	75
	Réservoir SM 2	SMOOS	FSI	527	790.3		1 0	5 . 23 . 5 7 . vide			5	2,1	
498	Réservoir SM 2	SM002	ESLU	274	109.1	ш	1 -	7 : vide					
	Réservoir SM 2	SM002	ESLU	372	301,3		-	5:100%	poissons	CACO et COCL	2 120/X	13,3	75
	Réservoir SM 2	SM002	ESLU	514	870		2	6 : chyme					
	Réservoir SM 2	SM002	ESLU	547	962,9		2	6 : chyme					
	Réservoir SM 2	SM002	ESLU	202	733		2	7 : vide					
	Réservoir SM 2	SM002	ESLU	297	1017,		7	7 : vide					
	Réservoir SM 2	SM002	ESLU	571	944,2	∑ !	2	7 : vide					
	Réservoir SM 2	SM002	ESLU	559	1139,		01 0	5:100%		00			09
	Reservoir SM 2	SMOOZ	ESEC	242	906,1		71 0	2:25%			< > - >	20	C. C.
510	Réservoir SM 2	SMOOZ	COCI	529 432	811,8	⊥∑	N M	Z : 25% 6 · chyme	Insectes et cnyme	Larves odonates	× ×	9,0	00
	Réservoir SM 2	SM002	ESLU	209	1165,		0 (2)	7 : vide					
	Réservoir SM 2	SM002	ESLU	1009	0806	ш	6	7 : vide					
515	Réservoir SM 2	SM002	COCL	441	944,6		4	3:50%	insectes	() ONI	×	5,1	75
	Réservoir SM 2	SM002	COCL	429	761,9		4	7 : vide					
	Réservoir SM 2	SM002	000 000	555	1826	≥ 2	CJ (6 : chyme					
510	Réservoir SM 2	SMOOZ		332 521	1343,7		უ ლ	6 : Criyme 7 : vida			+		
	Réservoir SM 2	SMOO2	COCI	526	1626.	4 □	0 4	3 : 50%	insectes	GNI	×	2.6	75
521	Réservoir SM 2	SM002	COCL	504	1160,		4	7 : vide					
	Réservoir SM 2	SM002	COCL	430	886,7	M	3	7 : vide					
	Réservoir SM 2	SM002	COCL	298	234,1		-	7 : vide					
524	Réservoir SM 2	SMO02	700	441	952	≥ ц	- 0	/ : vide					
	Réservoir SM 2	SM002	ESLU	314	176.4		7 [7 : vide					
	Réservoir SM 2	SM002	ESLU	301	151,6	ш	-	1 : traces	insectes	ONI	×	0,4	08
	Réservoir SM 2	SM002	ESLU	555	950,1		2	7 : vide					
	Réservoir SM 2	SM002	ESLU	472	697,1	Σ	1	5:100%	poisson	. Tooo	1 205	44,1	90
	Réservoir SM 2	SM002	COCL	463	1061,		4	6 : chyme					
	Réservoir SM 2	SM002	COCL	444	152,3		4	2 : 25%			1		20
	Réservoir SM 2	SM002	COCL	421	752		2	1 : traces	insectes	ONI	×××	2,2	40
	Réservoir SM 2	SM002	COCL	397	691,7	×	×	3:50%					20
	Réservoir SM 2	SM002	ESLU	551	1027,9		01 0	7 : vide			1		
539	Réservoir SM 2	SMOOZ		404 705	653,8	2 2	νœ	6 : cnyme 7 : vida			+		
	Réservoir SM 2	SMOOS	2000	414	739.9		ი ო	7 . vide 5 : 100%	insectes				05
542	Réservoir SM 2	SM002	COC	459	905.9		0 0	4:75%			×	9.1	02
	1	1	1222	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>:</u>	<u> </u>	2					

					ia.	1	000						
	SM002	ESLU	361	259,1	ш	7 5	2 : 25% 7 : vide	poisson et insectes	IND et larves odonates X	×	9	80	
Réservoir SM 2	SM002	COCL	401	668		- ღ	3:50%	insectes	X	×	5,4	80	
	SM002	COCL	411	8,999		က	6 : chyme		×	×	×	×	
	SM002	COCL	338	354,8	Σ	1	7 : vide						
	SM002	COCL	211	83,3		_	/ : vide						
Reservoir SIM Z	SMOOZ		48/	2,0/01		4 +	/ : Vide						
Réservoir SM 2	SMOOZ		307	789 B	Ω I	- o	7 : Vide	incontac	×	>	>	UR UR	
Béservoir SM 2	SMOOZ	COCI	348	348	. ≥) -	7 · vide			<	<		
Réservoir SM 2	SM002	COCL	364	465.6	Σ	. 5	6 : chvme						
Réservoir SM 2	SM002	TOOO	365	440,9	ш	1 2	6 : chyme						
Réservoir SM 2	SM002	COCL	465	1055,9	Σ	က	6 : chyme						
Réservoir SM 2	SM002	COCL	394	530,4	F	4	7 : vide						
Réservoir SM 2	SM002	COCL	386	593,2	M	2	4:75%	insectes		×	6,3	09	
SM3	Aval SM3	ESLU	222	1066,5	F	2	3:50%	poissons	COCL et IND	08/26	2,2/1,2	40	
Aval du réservoir SM 3	Aval SM3	ESLU	610	1635,0	Ь	3	5:100%	poisson		253	131,2	15	
	Aval SM3	ESLU	585	1237,0	Ц	3	7 : vide						
	Aval SM3	COCT	420	200,0		4	6 : chyme						
Aval du réservoir SM 3	Aval SM3	ESLU	009	1340,0		3	7 : vide						
	Aval SM3	ESLU	540	1073,5		2	2 : 25%	poissons		92/67	3,1/2,3	20	
	Aval SM3	ESLU	009	1581,0	Ш	3	3:50%	poissons	COPL 2	102/87	5,8/3,4	×	
	Aval SM3	COCL	315	276,3		3	6 : chyme						
	Aval SM3	ESLU	640	1524,0		2	2:25%	poisson	X	×	×	95	
	Aval SM3	ESLU	610	1493,0	Ш	3	7 : vide						
	Aval SM3	ESLU	595	1406,0		ဇ	2:25%	poissons	COPL 2	80/104	3,6/6,7	25	
	Aval SM3	ESLU	009	1458.0	Ш	3	5:100%	poisson	X ON	×	×		Diaéré
SM 3	Aval SM3	COCL	460	1005,0	Σ	3	7 : vide						
	Aval SM3	COCL	382	584,0	Ш	4	6 : chyme						
	Aval SM3	ESLU	260	1357,5	止	2	5:100%	poissons	IND 2	×	×	06	
	Aval SM3	COCL	290	216,8	Ш	3	6 : chyme						
Aval du réservoir SM 3	Aval SM3	COCL	280	185,2	M	2	6 : chyme						
	Aval SM3	COCL	260	130,6	Σ	1	6 : chyme						
	Aval SM3	COCL	270	140,5	Ь	1	7 : vide						
SM3	Aval SM3	COCL	250	128,0	M	2	6 : chyme						
	Aval SM3	COCL	290	203,3	Ц	3	6 : chyme						
	Aval SM3	COCL	280	179,5	ட	3	6 : chyme						
	Aval SM3	COCL	280	172,7	Ь	3	6 : chyme						
Aval du réservoir SM 3	Aval SM3	COCL	278	174,3	Д	3	6 : chyme						
	Aval SM3	COCL	250	115,8	Σ	1	7 : vide						
Aval du réservoir SM 3	Aval SM3	COCL	400	638,4	Σ	4	7 : vide						
	Aval SM3	COCL	385	517,0	ш	4	7 : vide						
	Aval SM3	COCL	370	433,2	Ь	3	7 : vide						
	Aval SM3	COCL	515	1685,0	Σ	4	5:100%	poissons	COPL (en majorité) 7	85 (en moyenne)	28,0	30	
	Aval SM3	SAFO	335	500,4	Ь	4	3:50%	poisson et insectes	IND 1	09	1,3	75	
	Aval SM3	ESLU	535	961,0	M	3	6 : chyme						
	Aval SM3	ESLU	540	1107,0	Ь	2	5:100%	poissons	COCL et COPL	240/88	61,5/5,3	mai-50	
	Aval SM3	COCL	380	502,7	M	4	6 : chyme						
	Aval SM3	COCL	365	484,0	Σ	4	2 : 25%	insectes	X	×	×	×	
SM3	Aval SM3	COCL	380	208,0	Ь	4	6 : chyme						
	Aval SM3	COCL	340	399,0	Ш	4	2 : 25%	insectes	X QNI	×	×	×	
	Aval SM3	COCL	350	420,0	土	ဗ	7 : vide						
	Aval SM3	COCL	380	611,0	止	4	7 : vide						
	Aval SM3	COCL	470	1007,0		4	7 : vide						
	Aval SM3	COCL	480	1053,5		4	6 : chyme						
	Aval SM3	COCL	455	940,3	Ь	4	6 : chýme						
Aval du réservoir SM 3	AVOI CAAD		027	2 000	Ц	٧	P vide						
	מאוט ומאל	7000	400	300,7	_	<u>+</u>	י יכנ						

																										Morceaux de caudale						vore															
																										Morce						Carnivore															
			79,9 50 X								27,1 50		2,3 75											\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	86 X		2,1 75				28,5					0 0 0					X 20					
			245 X	V							×		74											>	<	×		99				entre 65 et 100					040					×					
F				_		T					ilé 1		1	1	 								1	c	0	-		1		 		5		 			,					×	1	1	1		-
-			COCL								Condylure à nez étoilé	,	COPL												Laives odoliales	QN		IND				COCL et COPL					JUJ	2000				QNI					
			poisson	100000							mammifère		poisson											octooni to omido		poisson		poisson				poissons					2000	100000				insectes					
larguerite en 2017 6 : chyme	7 : vide	6 : chyme	5:100%		6 : chyme	6 : chyme	7 : vide	6 : chyme	7 : vide	6 : chyme	3:50%	6 : chyme	2:25%	6 : chyme	o . criyiile 7 · vida	7 : vide	6 : chyme	6 : chyme	7 : vide	7 : vide	7 : vide	6 : chyme	6 : chyme	7 : vide	6 · Chyme	1 : traces	6 : chyme	1 : traces	6 : chyme	6 : chyme	7 : vide	5:100%	6 : chyme	6 : cnyme 7 : vide	7 : vide	7 : vide	6 : chyme	7 : vide	7 : vide	7 : vide	7 : vide	1 : traces	6 : chyme	6 : chyme	6 : chyme	6 : cnyme	e chyme
lexe Sainte-N	3 .	2	0 m	ာ က	-	ကျင်	2 2	- 4	2	Ω +	- ღ	2	2	- 0	0 4	4	4	4	2	2	2	4	4 (2 0	ν C	3 2	2	2	- 0	N E) <u>(C</u>	4	- 0	N M) 	2	4 0	1 0	1 4	3	4	4	2	23	4 (3	c:
es au comp IM	<u>L</u>	Σ	ΣΣ	Ξ μ	Щ	цΣ	≥ ≥	Σ	M	T S	L L	Щ	M	Q L	_ Ц	. ≥	Ш	Ь	Ш	Ш	Ш	Щ	щ;	∑⊔	_ ц	_	Н	Щ	Щ	⊥ ≥	Σ	ч	QN:	Σ μ	. 止	ш	∑⊔	Щ	. 止	ഥ	Щ	щ	Σı	ц 2	Σι	_	Σ
ores capturé 966.4	1109,5	1057,3	1280,0	717,6	620,0	638,4	992,0	697,0	6'926	386,2	913,0	1756,0	469,2	152,2	11320	634.6	1135,3	785,8	1114,4	749,6	625,7	762,2	497,0	644,0	535.2	1292.5	833,7	1030,7	146,1	1372.0	540,3	752,6	160,8	1246,2	214,7	442,8	450,1	1473.8	561,6	792,7	1006,5	1133,2	1172,1	5000,0	4000,0	7520,0	6113
èces pisciv 525	260	535	570 495	410	385	490	490 550	390	292	345	535	688	430	300	290	395	465	415	292	230	490	410	370	465	363 450	578	528	292	258	284 497	384	409	272	5/4	287	365	339	609	390	423	469	464	559	904	846	848	459
ux des espo	ESLU	ESLU	ESLU	COCL	COCL	ESLU	ESLU	COCL	ESLU	7 000 000	ESLU	ESLU	ESLU	ESLU		COCL	COCL	COCL	ESLU	ESLU	ESLU	COCL	COCL	ESLU	E 2 C	ESLU	ESLU	ESLU	COCL		1000 COCL	COCL	COCL	ESLU	1000	COCL	SAFO	ESIL	1000	COCL	COCL	COCL	ESLU	ESLU	ESLU	ESLU	C
Aval SM3	Aval SM3	Aval SM3	Aval SM3	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SMOOS	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SM002	SMOOZ	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM3	Aval SM2	Aval SM2	Aval SMZ	Aval SM2
Description des contenus stomacaux des espèces piscivores capturées au complexe Sainte-Marguerite en 2017 Aval du réservoir SM 3 Aval SM3 IESLU 1525 1966.4 M 2 16 : chyme	Aval du réservoir SM 3		SM3		Réservoir SM 2				Réservoir SM 2		Réservoir SM 2			Réservoir SM 2										Réservoir SM 2		SM3		Aval du réservoir SM 3		Aval du réservoir SM 3				Aval du réservoir SM 3			Aval du réservoir SM 3								Aval du réservoir SM 2		Aval du réservoir SM 2

Aval SM2 ESLU 444 5 Aval du réservoir SM 2 Aval SM2 ESLU 444 5 Aval du réservoir SM 2 Aval SM2 COCL 461 9 Aval du réservoir SM 2 Aval SM2 COCL 484 5 Aval du réservoir SM 2 Aval SM2 COCL 434 9 Aval du réservoir SM 2 Aval SM2 COCL 434 8 Aval du réservoir SM 2 Aval SM2 COCL 228 8 Aval du réservoir SM 2 Aval SM2 COCL 215 8 Aval du réservoir SM 2 Aval SM2 COCL 207 6 Aval du réservoir SM 2 Aval SM2 COCL 244 1 Aval du réservoir SM 2 Aval SM2 COCL 244 1 Aval du réservoir SM 2 Aval SM2 COCL 249 8 Aval du réservoir SM 2 Aval SM2 COCL 249 8 Aval du réservoir SM 2 Aval SM2 COCL 249 9 Aval				poisson	QN	3 140 (1	140 (1 ^{er} poisson)	18,1/2/2	50	
Aval SM2 Aval SM3 Aval SM3 Aval SM4 Aval S								10, 175/2		
Aval SM2 COCL 544 Aval SM2 COCL 461 Aval SM2 COCL 461 Aval SM2 COCL 434 Aval SM2 COCL 251 Aval SM2 COCL 228 Aval SM2 COCL 215 Aval SM2 COCL 217 Aval SM2 COCL 244 Aval SM2 COCL 449 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 COCL 431 Aval SM2 COCL 431 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 242 <td< td=""><td></td><td></td><td>6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide 7 : vide 6 : chyme 7 : vide 7 : vide</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide 7 : vide 6 : chyme 7 : vide							
Avai SM2 COCL 461 Avai SM2 COCL 338 Avai SM2 COCL 434 Avai SM2 COCL 251 Avai SM2 COCL 228 Avai SM2 COCL 215 Avai SM2 COCL 207 Avai SM2 COCL 211 Avai SM2 COCL 464 Avai SM2 COCL 449 Avai SM2 COCL 441 Avai SM2 COCL 441 Avai SM2 COCL 431 Avai SM2 COCL 431 Avai SM2 COCL 473 Avai SM2 COCL 242 Avai SM2 COCL 242 Avai SM2 COCL 242 Avai SM2 COCL 242 <td< td=""><td></td><td></td><td>6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 6 : chyme 7 : vide 7 : vide 6 : chyme 7 : vide 7 : vide</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 6 : chyme 7 : vide 7 : vide 6 : chyme 7 : vide							
Aval SM2 COCL 338 Aval SM2 COCL 434 Aval SM2 COCL 251 Aval SM2 COCL 228 Aval SM2 COCL 215 Aval SM2 COCL 217 Aval SM2 COCL 234 Aval SM2 COCL 449 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 437 Aval SM2 COCL 431 Aval SM2 COCL 431 Aval SM2 COCL 431 Aval SM2 COCL 473 Aval SM2 COCL 473 Aval SM2 COCL 237 Aval SM2 COCL 238 Aval SM2 COCL 238 Aval SM2 COCL 238			6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide 7 : vide 6 : chyme 6 : chyme 6 : chyme 6 : chyme 7 : vide 7 : vide 6 : chyme 7 : vide							
Aval SM2 COCL 434 Aval SM2 ESLU 533 Aval SM2 COCL 228 Aval SM2 COCL 215 Aval SM2 COCL 217 Aval SM2 COCL 234 Aval SM2 COCL 249 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 431 Aval SM2 COCL 237 Aval SM2 COCL 238			7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide 6 : chyme 7 : vide 7 : vide 6 : chyme 7 : vide							
Aval SM2 ESLU 533 Aval SM2 COCL 251 Aval SM2 COCL 228 Aval SM2 COCL 217 Aval SM2 COCL 234 Aval SM2 COCL 234 Aval SM2 COCL 249 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 437 Aval SM2 COCL 431 Aval SM2 COCL 237 Aval SM2 COCL 238 Aval SM2 COCL 238			6 : chyme 6 : chyme 6 : chyme 7 : vide 6 : chyme 7 : vide 7 : vide 6 : chyme 7 : vide							
Aval SM2 COCL 251 Aval SM2 COCL 228 Aval SM2 COCL 215 Aval SM2 COCL 217 Aval SM2 COCL 234 Aval SM2 COCL 249 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 437 Aval SM2 COCL 431 Aval SM2 COCL 237 Aval SM2 COCL 238			6 : chyme 6 : chyme 7 : vide 6 : chyme 7 : vide 6 : chyme 7 : vide							
Aval SM2 Aval SM3 Aval SM3 Aval SM4 Aval SM4 Aval SM4 Aval SM5 Aval SM6 Aval SM7 Aval SM7 Aval SM7 Aval SM7 Aval SM8 Aval S			6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 6 : chyme 7 : vide 6 : chyme 7 : vide							
Aval SM2 COCL 215 Aval SM2 COCL 207 Aval SM2 COCL 197 Aval SM2 COCL 234 Aval SM2 COCL 234 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 431 Aval SM2 COCL 237 Aval SM2 COCL 237 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 242			6 : chyme 7 : vide 6 : chyme 7 : vide 6 : chyme 7 : vide							
Aval SM2 Aval SM3 Aval SM3 Aval SM4 Aval SM4 Aval SM5 Aval SM6 Aval SM7 Aval SM7 Aval SM7 Aval SM7 Aval SM8 Aval S			6 chyme 6 chyme 6 chyme 6 chyme 6 chyme 6 chyme 7 vide 6 chyme 7 vide							
Aval SM2 COCL 211 Aval SM2 COCL 197 Aval SM2 COCL 234 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 431 Aval SM2 COCL 431 Aval SM2 COCL 431 Aval SM2 COCL 431 Aval SM2 COCL 473 Aval SM2 COCL 237 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 243 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 239 Aval SM2 COCL 239			6 : chyme 7 : vide 6 : chyme 6 : chyme 7 : vide							
Aval SM2 COCL 197 Aval SM2 COCL 464 Aval SM2 COCL 234 Aval SM2 COCL 256 Aval SM2 COCL 447 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 431 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 COCL 478 Aval SM2 COCL 478 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 239			6 : chyme 6 : chyme 6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 7 : vide							
Aval SM2 COCL 464 Aval SM2 COCL 234 Aval SM2 COCL 256 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 COCL 431 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 COCL 478 Aval SM2 COCL 478 Aval SM2 COCL 242 Aval SM2 COCL 239			6 : chyme 6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide							
Aval SM2 COCL 234 Aval SM2 COCL 256 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 COCL 441 Aval SM2 ESLU 568 Aval SM2 COCL 237 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 COCL 478 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239			6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide							
Aval SM2 COCL 256 Aval SM2 COCL 437 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 ESLU 568 Aval SM2 COCL 237 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 ESLU 498 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 ESLU 495			6 : chyme 6 : chyme 7 : vide 6 : chyme 6 : chyme 7 : vide							
Aval SM2 COCL 437 Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 ESLU 568 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 COCL 431 Aval SM2 ESLU 498 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 239 Aval SM2 COCL 239 Aval SM2 ESLU 495			6 : chyme 7 : vide 6 : chyme 6 : chyme 7 : vide							
Aval SM2 COCL 449 Aval SM2 COCL 441 Aval SM2 ESLU 568 Aval SM2 ESLU 549 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 ESLU 498 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 239 Aval SM2 COCL 239 Aval SM2 ESLU 495		Q	7 : vide 6 : chyme 6 : chyme 6 : chyme 7 : vide 7 : vide 7 : vide 7 : vide 7 : vide 7 : vide							
Aval SM2 COCL 441 Aval SM2 ESLU 568 Aval SM2 ESLU 549 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 ESLU 498 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 239 Aval SM2 ESLU 495			6 : chyme 6 : chyme 6 : chyme 7 : vide							
Aval SM2 ESLU 568 Aval SM2 ESLU 549 Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 ESLU 478 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 239 Aval SM2 ESLU 495		Q	6 : chyme 6 : chyme 7 : vide 6 : chyme 7 : vide 7 : vide 7 : vide 7 : vide							
Aval SM2		Ω	6 : chyme 7 : vide 6 : chyme 7 : vide							
Aval SM2 COCL 237 Aval SM2 COCL 431 Aval SM2 ESLU 498 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 COCL 239		Δ	7 : vide 7 : vide 7 : vide 7 : vide 7 : vide 7 : vide 7 : vide							
Aval SM2 COCL 431 Aval SM2 ESLU 478 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 ESLU 495			6 : chyme 7 : vide 7 : vide 7 : vide 7 : vide 7 : vide							
Aval SM2			7 : vide 7 : vide 7 : vide 7 : vide 7 : vide							
Aval SM2 ESLU 498 Aval SM2 ESLU 478 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 ESLU 495			7 vide 7 vide 7 vide 7 vide 7 vide							
Aval SM2 ESLU 478 Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 ESLU 495			7 : vide 7 : vide 7 : vide 7 : vide							
Aval SM2 COCL 473 Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 ESLU 495			7 : vide 7 : vide 7 : vide							
Aval SM2 COCL 242 Aval SM2 COCL 239 Aval SM2 ESLU 495			7 : vide 7 : vide	_						
Aval SM2 COCL 239 Aval SM2 ESLU 495			7 : vide							
Aval SM2 ESLU 495										
		2	6 : chvme							
Aval SM2 FSLU 569	928.9 F		7 · vide							
Aval SM2 FSI 449			om/do . 8							
FS111 523	751 Q M	- -	9 div. 7							
Aval SM2 EST 11 662	M 7377	- 0	- vide							
ESLU 602	1400,4		7 . VIGG			1				
Avai Siviz ESLO 307			eniv. /							
Avai SMZ ESLU 607			o : cnyme			1				
Avai SM2 ESLU 451		2 .	/ : vide							
Aval SM2 ESLU 765			/ : vide							
COCL 430			6 : chyme							
Aval SM2 COCL 357		2								
Aval SM2 COCL 377				insectes	IND	×		×	85	
393	512,4 F									
Aval SM2 COCL 415				poissons	IND	7 35 (er	35 (en moyenne)	5,5	75	
Aval du réservoir SM 2 Aval SM2 COCL 349 3		2	6 : chyme							
Aval SM2 COCL 440			S	insectes	IND	×		4,3	X	
Aval SM2 COCL 296			7 : vide							
ESLU 451	506,2 F	2	7 : vide							
Aval SM2 ESLU 496		2	7 : vide							
Aval SM2 ESLU 495			7 : vide							
ESLU 532	808,1 M	2	6 : chyme							
Aval SM2 ESLU 567			6 : chyme							
Aval SM2 ESLU 534		2	7 : vide							
Aval SM2 COCL 434			7 : vide							
Aval SM2 COCL 424			7 : vide							
Aval SM2 COCL 468	1045,3 M		6 : chyme							
Aval SM2 COCL 380			6 : chyme							
Aval SM2 COCL 357	401,2 M		6 : chyme							
COCL 443	354,2 F	2	6 : chyme							
Aval SM2 COCL 403	592,1 F	4		insectes	QNI	×		×	25	

				_					_	_	_			_	_	_	_			_	_				
												×		×											L
												×		×											L
												×		×											
												×		×											_
												QNI		IND											
												insectes et chyme		insectes											
6 : chyme	7 : vide	6 : chyme	6 : chyme	7 : vide	6 : chyme	7 : vide	6 : chyme	6 : chyme	7 : vide	6 : chyme	6 : chyme	1 : traces	7 : vide	2:25%	6 : chyme	6 : chyme	7 : vide	6 : chyme	7 : vide	.00					
2	2	2	2	4	3	3	3	×	×	3	3	4	3	4	2	2	4	2	2	2	2	2	2	2	ď
Ь	Σ	Ь	Ш	Ш	Σ	M	M	QNI	QNI	Ш	Ш	Ш	Σ	Ш	Ш	Ш	Ш	Ш	Ь	Ш	Ш	Σ	Ш	Σ	L
1077,4	567,2	842,6	206,3	1113,6	1274,8	1074	639,3	89,4	341,8	797,5	631,3	1109	6'889	226	726,5	861,9	9,687	984	921,3	9,688	812,8	586,1	959,4	654,3	000
621	474	547	435	477	489	468	411	223	340	445	408	485	399	454	440	448	436	268	532	535	222	469	222	486	
ESLU	ESLU	ESLU	COCL	ESLU	- - -																				
Aval SM2	0,40																								
Aval du réservoir SM 2																									
756	757	758	759	260	761	764	765	992	292	292	692	770	771	772	773	276	777	778	779	780	781	782	783	784	1